LLM项目:实现简洁的Schema DSL替代JSON Schema
在LLM项目中,开发者们一直在寻找更高效的方式来定义数据结构。传统的JSON Schema虽然功能强大,但在手动编写时往往显得冗长且不够直观。为了解决这个问题,LLM项目引入了一种创新的简洁Schema DSL(领域特定语言),极大地简化了数据结构定义的过程。
Schema DSL的设计理念
这种新型Schema DSL的核心设计目标是降低使用门槛,同时保持足够的表达能力。它允许开发者通过简单的文本字符串快速定义复杂的数据结构,而无需编写繁琐的JSON Schema。
语法特性解析
这种DSL语法具有几个关键特性:
-
基本属性定义:最简单的形式只需列出属性名,用逗号分隔。例如
name, bio定义了一个包含两个字符串属性的对象。 -
类型标注:通过在属性名后添加类型指示符来指定数据类型。支持的类型包括:
int:整数float:浮点数str:字符串(默认类型)bool:布尔值
示例:
name, age int定义了一个字符串属性name和一个整数属性age。 -
描述性文本:可以为每个属性添加描述,作为模型的提示信息。描述文本放在冒号后面,例如:
name: the person's name。 -
多行格式:当Schema变得复杂时,可以切换到换行分隔的格式,这样可以在描述中使用逗号而不会造成歧义。
实际应用示例
这种DSL可以直接在LLM命令行工具中使用:
llm --schema 'name,age int,vibes: as a haiku' 'invent a dog'
输出结果会严格遵循定义的结构:
{
"name": "Barkley",
"age": 5,
"vibes": "Joyful playfulness,\nChasing dreams in fields of green,\nLoyal friend always."
}
高级功能
-
多项目输出:使用
--schema-multi选项可以生成多个符合Schema的对象,相当于JSON Schema中的items数组。 -
Python API支持:开发者可以在Python代码中使用
llm.schema_dsl(schema)函数将DSL转换为标准的JSON Schema字典。 -
调试工具:项目还提供了
llm schemas dsl命令,可以实时查看DSL转换后的完整JSON Schema结构。
技术实现细节
该功能的实现包括一个高效的解析器,能够处理各种格式的DSL输入。解析器会自动检测输入格式,区分简单的逗号分隔列表和更复杂的多行带描述的定义。
类型系统经过精心设计,既保持了简单性又覆盖了常见的数据类型需求。描述文本的处理考虑了包含标点符号的情况,确保语法解析的准确性。
总结
LLM项目的这一创新大大降低了使用结构化输出的门槛,使得开发者能够更专注于数据模型的设计而非繁琐的语法细节。这种DSL不仅提高了开发效率,还通过其直观的语法降低了学习曲线,是JSON Schema的一个极佳替代方案。
对于需要频繁定义数据结构的开发者来说,这一功能将成为日常工作中的强大助力,特别是在快速原型开发和交互式AI应用场景中。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00