VOneNet 开源项目使用教程
2024-09-12 04:47:49作者:宣聪麟
1. 项目介绍
VOneNet 是一个结合了卷积神经网络(CNN)和模拟灵长类动物初级视觉皮层(V1)的混合模型。每个 VOneNet 包含一个固定权重的神经网络前端,称为 VOneBlock,它模拟了灵长类动物的 V1 区域。这个前端之后是一个神经网络后端,通常是现有的 CNN 模型。VOneNet 的设计旨在提高模型对图像扰动的鲁棒性,使其在对抗攻击和常见图像损坏的情况下表现更好。
2. 项目快速启动
2.1 环境准备
确保你的环境中安装了以下依赖:
- Python 3.6+
- PyTorch 0.4.1+
- numpy
- pandas
- tqdm
- scipy
2.2 克隆项目
首先,克隆 VOneNet 项目到本地:
git clone https://github.com/dicarlolab/vonenet.git
cd vonenet
2.3 下载数据集
VOneNet 需要 ImageNet 数据集进行训练和验证。你可以从以下链接下载数据集:
wget https://academictorrents.com/collection/imagenet-2012
下载完成后,解压数据集:
mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
tar -xvf ILSVRC2012_img_train.tar
rm -f ILSVRC2012_img_train.tar
mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val
tar -xvf ILSVRC2012_img_val.tar
rm -f ILSVRC2012_img_val.tar
2.4 安装项目
在项目目录下运行以下命令安装 VOneNet:
python3 setup.py install
2.5 运行项目
使用以下命令运行 VOneNet:
python3 run.py --in_path [数据集目录]
如果遇到 GPU 相关问题,可以尝试在 CPU 上运行:
python3 run.py --in_path [数据集目录] --ngpus 0
3. 应用案例和最佳实践
3.1 图像分类
VOneNet 可以用于图像分类任务,特别是在需要高鲁棒性的场景中。例如,在医疗影像分析中,VOneNet 可以提高模型对图像噪声和扰动的抵抗力,从而提高诊断的准确性。
3.2 对抗攻击防御
VOneNet 的设计使其在对抗攻击下表现更好。通过在 VOneBlock 中引入模拟 V1 的神经网络,VOneNet 能够更好地识别和过滤掉对抗性扰动,从而提高模型的安全性。
4. 典型生态项目
4.1 PyTorch
VOneNet 是基于 PyTorch 框架开发的,因此与 PyTorch 生态系统中的其他项目兼容性良好。你可以轻松地将 VOneNet 与其他 PyTorch 模型结合使用。
4.2 ImageNet
VOneNet 在 ImageNet 数据集上进行了训练和验证,因此与 ImageNet 相关的研究和应用场景中,VOneNet 可以作为一个强大的工具。
通过以上步骤,你可以快速上手并使用 VOneNet 进行图像处理和分类任务。希望这个教程对你有所帮助!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219