MMPose项目中使用预训练模型进行微调时的常见问题解析
2025-06-03 15:00:44作者:郦嵘贵Just
问题背景
在使用MMPose进行姿态估计任务时,研究人员和开发者经常会遇到需要基于预训练模型进行微调的情况。然而,在实际操作过程中,特别是在尝试加载预训练权重时,可能会遇到message_hub
键缺失的错误提示,导致模型无法正常加载。
错误现象分析
当用户尝试通过python tools/train.sh --resume <path to pretrained checkpoint>
命令恢复训练或加载预训练模型时,系统会抛出KeyError: 'message_hub'
错误。这是因为MMEngine的Runner在恢复训练时,默认会尝试加载检查点中的message_hub状态,而MMPose保存的模型检查点中并不包含这一信息。
技术原理
MMPose和MMEngine之间的交互机制是理解这一问题的关键。MMEngine作为底层框架,设计了一套完整的训练状态恢复机制,其中包括对message_hub状态的保存和恢复。而MMPose作为上层应用,在保存模型时出于精简考虑,没有保存message_hub相关的状态信息。
解决方案
正确加载预训练权重的方法
-
区分resume和load_from:
resume=True
用于恢复中断的训练,会尝试加载完整的训练状态load_from
仅用于加载模型权重,不恢复训练状态
-
推荐做法:
python tools/train.py configs/your_config.py --load-from=pretrained_model.pth
-
配置文件设置: 在配置文件中明确指定:
load_from = 'pretrained_model.pth'
命令行参数的正确使用
对于命令行操作,应该避免使用--resume
参数来加载预训练权重,而应该使用--load-from
参数:
python tools/train.py configs/your_config.py --load-from=pretrained_model.pth
深入理解
-
模型保存机制: MMPose默认只保存模型权重和优化器状态,不保存训练过程中的message_hub等辅助信息,这是为了减小模型文件体积。
-
训练恢复与权重加载的区别:
- 训练恢复(resume)需要完整的训练状态
- 权重加载(load_from)只需要模型参数
-
版本兼容性: 不同版本的MMPose和MMEngine在这方面的处理可能略有不同,建议保持框架和工具包版本的一致性。
最佳实践建议
- 明确区分预训练权重加载和训练恢复两种场景
- 对于微调任务,优先使用
load_from
参数 - 检查模型文件和配置文件的版本兼容性
- 在团队协作中,统一模型保存和加载的规范
通过理解这些底层机制和正确使用方法,可以避免在MMPose项目中使用预训练模型时遇到的各种问题,提高开发效率。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
231
2.32 K

仓颉编译器源码及 cjdb 调试工具。
C++
112
78

React Native鸿蒙化仓库
JavaScript
216
291

暂无简介
Dart
532
117

仓颉编程语言运行时与标准库。
Cangjie
122
93

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
993
588

Ascend Extension for PyTorch
Python
75
105

仓颉编程语言测试用例。
Cangjie
34
61

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
401