Apache Linkis中Spark引擎SecureRandomStringUtils.random方法阻塞问题分析
在Apache Linkis 1.1.2版本中,当用户执行PySpark任务时,可能会遇到Java线程阻塞的问题。这个问题主要出现在SparkPythonExecutor生成随机字符串的过程中,具体表现为SecureRandomStringUtils.random方法的执行被卡住。
问题现象
通过线程堆栈分析可以看到,TaskExecution-Thread-1线程在调用SecureRandomStringUtils.random方法时进入了RUNNABLE状态,但实际上却无法继续执行。堆栈跟踪显示,线程阻塞在FileInputStream.readBytes的本地方法调用上,这是Java安全随机数生成器(NativePRNG)获取熵源时的典型表现。
根本原因
这个问题本质上与Java安全随机数生成机制有关。SecureRandom在Linux系统上默认使用/dev/random作为熵源,而/dev/random会阻塞直到收集到足够的系统熵。在虚拟化环境或容器中,系统熵可能不足,导致SecureRandom.nextBytes()调用被无限期阻塞。
技术背景
Java的SecureRandom类提供了加密强随机数生成器实现。在Linux平台上,它通常通过以下两种方式获取随机数:
- 阻塞式熵源(/dev/random):确保高质量的随机性,但可能因熵不足而阻塞
- 非阻塞式熵源(/dev/urandom):不阻塞,但随机性质量略低
解决方案
针对这个问题,社区提出了几种可行的解决方案:
-
JVM参数调整
通过设置-Djava.security.egd=file:/dev/./urandom参数,强制JVM使用非阻塞式的随机数源。这个方案简单有效,但会略微降低随机数的加密强度。 -
系统级熵增强
在服务器上安装haveged等熵收集守护进程,可以持续为系统提供足够的熵。这种方法既保持了随机数的安全性,又避免了阻塞问题。 -
代码层优化
在Linkis中增加配置选项,允许用户根据实际需求选择是否使用安全随机数。对于不需要高安全性的场景,可以回退到普通的Random实现。
最佳实践建议
对于生产环境,我们建议采用组合方案:
- 对于安全性要求高的场景,安装haveged服务并保持默认配置
- 对于一般场景,可以使用JVM参数调整为非阻塞模式
- 在Linkis配置中增加随机数生成策略选项,提供更大的灵活性
总结
这个问题展示了在分布式系统中使用加密安全随机数时可能遇到的典型挑战。通过理解底层机制和多种解决方案,运维人员可以根据实际环境和安全需求选择最适合的配置方式。Apache Linkis社区也在持续优化这方面的实现,以提供更好的用户体验和系统稳定性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00