AWS Deep Learning Containers发布PyTorch 2.3.0训练镜像
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、库和工具,能够帮助开发者快速部署和运行深度学习工作负载。DLC镜像针对AWS基础设施进行了专门优化,支持CPU和GPU加速,并集成了Amazon SageMaker等AWS机器学习服务。
PyTorch 2.3.0训练镜像更新
AWS近日发布了基于PyTorch 2.3.0框架的深度学习训练容器镜像,这些镜像支持Python 3.11环境,运行在Ubuntu 20.04操作系统上。本次更新包含两个主要版本:
CPU版本镜像
CPU版本镜像(pytorch-training:2.3.0-cpu-py311-ubuntu20.04-sagemaker-v1.27)专为CPU计算环境设计,适合不需要GPU加速的训练场景。该镜像包含了PyTorch 2.3.0及其相关生态工具链,如:
- 数据处理库:NumPy 1.26.4、Pandas 2.2.2
- 计算机视觉库:OpenCV 4.9.0.80、Pillow 10.3.0
- 机器学习工具:scikit-learn 1.5.0、scipy 1.13.1
- 自然语言处理:spaCy 3.7.3
- AWS集成工具:sagemaker 2.221.1、s3fs 0.4.2
GPU版本镜像
GPU版本镜像(pytorch-training:2.3.0-gpu-py311-cu121-ubuntu20.04-sagemaker-v1.27)针对NVIDIA CUDA 12.1环境进行了优化,支持GPU加速训练。除了包含CPU版本的所有功能外,还额外提供了:
- NVIDIA CUDA深度神经网络库(cuDNN)支持
- Apex混合精度训练工具
- smdistributed-dataparallel分布式训练支持
- 针对GPU优化的PyTorch扩展
技术特点与优势
-
框架版本更新:基于PyTorch 2.3.0稳定版,包含了最新的性能优化和功能改进。
-
Python 3.11支持:利用Python 3.11的性能提升,特别是更快的启动时间和更低的内存占用。
-
完整的工具链集成:预装了从数据处理到模型训练、评估的全套工具,减少了环境配置的复杂性。
-
AWS服务深度集成:内置了与SageMaker、S3等AWS服务的无缝集成组件,简化了云上机器学习工作流的构建。
-
安全与稳定:基于Ubuntu 20.04 LTS,提供长期支持的安全更新,确保生产环境的稳定性。
适用场景
这些DLC镜像特别适合以下应用场景:
- 需要快速搭建PyTorch训练环境的开发者
- 在AWS云平台上部署机器学习工作流的企业
- 需要可重复、标准化训练环境的研究团队
- 希望利用最新PyTorch特性但又不想处理复杂依赖关系的用户
AWS Deep Learning Containers通过提供这些预构建、优化和测试的镜像,显著降低了深度学习项目的入门门槛和运维复杂度,使开发者能够更专注于模型本身而非基础设施配置。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









