AWS Deep Learning Containers发布PyTorch 2.3.0训练镜像
2025-07-07 00:00:17作者:钟日瑜
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像已经过优化,可在AWS云环境中高效运行。这些容器包含了流行的深度学习框架及其依赖项,使数据科学家和开发人员能够快速开始训练和推理任务,而无需花费时间配置环境。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.3.0框架的新版本训练镜像,支持Python 3.11环境。这一更新为深度学习开发者带来了最新的PyTorch功能特性和性能优化。
镜像版本概览
本次发布包含两个主要镜像版本:
-
CPU版本:基于Ubuntu 20.04操作系统,适用于不需要GPU加速的训练场景。镜像标识为
pytorch-training:2.3.0-cpu-py311-ubuntu20.04-sagemaker-v1.28
。 -
GPU版本:同样基于Ubuntu 20.04,但支持CUDA 12.1,适用于需要GPU加速的训练任务。镜像标识为
pytorch-training:2.3.0-gpu-py311-cu121-ubuntu20.04-sagemaker-v1.28
。
关键特性与组件
这两个镜像都预装了PyTorch 2.3.0框架及其相关组件,包括:
- torchaudio 2.3.0:用于音频处理的PyTorch扩展库
- torchvision 0.18.0:计算机视觉任务的PyTorch扩展库
- smdistributed-dataparallel 2.3.0(仅GPU版本):支持分布式数据并行训练的库
此外,镜像中还包含了丰富的Python生态系统工具:
- 数据处理与分析:pandas 2.2.2、numpy 1.26.4
- 科学计算:scipy 1.13.1、scikit-learn 1.5.0
- 深度学习辅助工具:fastai 2.7.15、spacy 3.7.3
- 可视化:seaborn 0.13.2、opencv-python 4.9.0.80
- AWS集成:boto3 1.34.112、sagemaker 2.221.1
系统级优化
在底层系统支持方面,这些镜像进行了多项优化:
- 使用Ubuntu 20.04作为基础操作系统,提供稳定的运行环境
- 预装了必要的系统库,如libgcc、libstdc++等
- 包含MPI支持(mpi4py 3.1.6),便于分布式训练
- 针对CUDA 12.1进行了优化(GPU版本)
适用场景
这些PyTorch训练镜像特别适合以下场景:
- 快速原型开发:预装的环境让开发者可以立即开始模型训练,无需花费时间配置环境
- 大规模训练任务:支持分布式训练和GPU加速,适合处理大规模数据集
- SageMaker集成:预装了SageMaker相关组件,便于在AWS机器学习平台上使用
- 生产环境部署:经过AWS优化的容器镜像,提供稳定的运行性能
技术价值
此次发布的PyTorch 2.3.0镜像为开发者带来了多项技术优势:
- 性能提升:PyTorch 2.3.0带来了多项性能优化,特别是对Transformer类模型的支持更加完善
- Python 3.11支持:利用最新Python版本的语言特性和性能改进
- CUDA 12.1兼容性(GPU版本):支持最新的NVIDIA GPU架构和特性
- 完整的工具链:从数据处理到模型训练、评估的全套工具一应俱全
对于希望在AWS云环境中使用PyTorch进行深度学习开发的团队来说,这些预构建的容器镜像可以显著降低环境配置的复杂性,让开发者能够专注于模型本身而非基础设施。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~045CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0301- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析10 freeCodeCamp课程中屏幕放大器知识点优化分析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
863
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K