AWS Deep Learning Containers发布PyTorch 2.3.0训练镜像
2025-07-07 05:21:02作者:钟日瑜
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像已经过优化,可在AWS云环境中高效运行。这些容器包含了流行的深度学习框架及其依赖项,使数据科学家和开发人员能够快速开始训练和推理任务,而无需花费时间配置环境。
近日,AWS Deep Learning Containers项目发布了基于PyTorch 2.3.0框架的新版本训练镜像,支持Python 3.11环境。这一更新为深度学习开发者带来了最新的PyTorch功能特性和性能优化。
镜像版本概览
本次发布包含两个主要镜像版本:
-
CPU版本:基于Ubuntu 20.04操作系统,适用于不需要GPU加速的训练场景。镜像标识为
pytorch-training:2.3.0-cpu-py311-ubuntu20.04-sagemaker-v1.28。 -
GPU版本:同样基于Ubuntu 20.04,但支持CUDA 12.1,适用于需要GPU加速的训练任务。镜像标识为
pytorch-training:2.3.0-gpu-py311-cu121-ubuntu20.04-sagemaker-v1.28。
关键特性与组件
这两个镜像都预装了PyTorch 2.3.0框架及其相关组件,包括:
- torchaudio 2.3.0:用于音频处理的PyTorch扩展库
- torchvision 0.18.0:计算机视觉任务的PyTorch扩展库
- smdistributed-dataparallel 2.3.0(仅GPU版本):支持分布式数据并行训练的库
此外,镜像中还包含了丰富的Python生态系统工具:
- 数据处理与分析:pandas 2.2.2、numpy 1.26.4
- 科学计算:scipy 1.13.1、scikit-learn 1.5.0
- 深度学习辅助工具:fastai 2.7.15、spacy 3.7.3
- 可视化:seaborn 0.13.2、opencv-python 4.9.0.80
- AWS集成:boto3 1.34.112、sagemaker 2.221.1
系统级优化
在底层系统支持方面,这些镜像进行了多项优化:
- 使用Ubuntu 20.04作为基础操作系统,提供稳定的运行环境
- 预装了必要的系统库,如libgcc、libstdc++等
- 包含MPI支持(mpi4py 3.1.6),便于分布式训练
- 针对CUDA 12.1进行了优化(GPU版本)
适用场景
这些PyTorch训练镜像特别适合以下场景:
- 快速原型开发:预装的环境让开发者可以立即开始模型训练,无需花费时间配置环境
- 大规模训练任务:支持分布式训练和GPU加速,适合处理大规模数据集
- SageMaker集成:预装了SageMaker相关组件,便于在AWS机器学习平台上使用
- 生产环境部署:经过AWS优化的容器镜像,提供稳定的运行性能
技术价值
此次发布的PyTorch 2.3.0镜像为开发者带来了多项技术优势:
- 性能提升:PyTorch 2.3.0带来了多项性能优化,特别是对Transformer类模型的支持更加完善
- Python 3.11支持:利用最新Python版本的语言特性和性能改进
- CUDA 12.1兼容性(GPU版本):支持最新的NVIDIA GPU架构和特性
- 完整的工具链:从数据处理到模型训练、评估的全套工具一应俱全
对于希望在AWS云环境中使用PyTorch进行深度学习开发的团队来说,这些预构建的容器镜像可以显著降低环境配置的复杂性,让开发者能够专注于模型本身而非基础设施。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生BilibiliDown视频下载工具完整使用指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
754
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
179
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248