首页
/ sMRIPrep: 结构磁共振成像预处理管道

sMRIPrep: 结构磁共振成像预处理管道

2024-08-30 16:35:32作者:蔡丛锟

项目介绍

sMRIPrep 是一款专为结构性磁共振成像(sMRI)数据设计的预处理工具,旨在提供一个易用且具备最新技术水平的界面。该软件旨在对不同的扫描采集协议具有鲁棒性,并在最小化用户输入的同时,提供易于理解且全面的错误和输出报告。它执行基本的数据处理步骤,包括受试者级别的平均、B1场校正、空间标准化、脑剥离等。sMRIPrep利用Nipype构建,集成了FSL、ANTs、FreeSurfer和Connectome Workbench等成熟软件包的工具。

项目快速启动

为了快速启动sMRIPrep,你需要先安装Docker或Singularity。以下是在Docker环境下的快速启动示例:

$ smriprep-docker --fs-license-file $HOME/licenses/freesurfer/license.txt \
                   /path/to/data/dir /path/to/output/dir participant

确保替换/path/to/data/dir/path/to/output/dir为你实际的数据路径和期望的输出路径。若你的系统已设置环境变量FS_LICENSE指向FreeSurfer许可证文件,则无需重复指定许可证路径。

应用案例和最佳实践

应用案例

sMRIPrep广泛应用于神经影像学研究中,特别是在需要对来自不同扫描仪和扫描参数的多个受试者大脑图像进行标准化处理时。通过其自动适应数据特性并执行一系列标准化步骤的能力,研究者可以减少因技术差异造成的偏倚,使后续分析更加一致可靠。

最佳实践

  • 遵循BIDS标准:确保你的数据组织符合Brain Imaging Data Structure(BIDS),这将简化数据导入过程。
  • 细致检查报告:sMRIPrep为每个受试者生成视觉报告,应仔细审查以确认关键处理步骤的准确性。
  • 环境配置:使用官方推荐的容器技术(如Docker或Singularity)来运行sMRIPrep,确保环境的一致性和可复现性。

典型生态项目

sMRIPrep是更广泛的神经影像分析生态系统的一部分,它通常与其他工具配合使用,比如fMRIPrep用于功能MRI数据预处理,以及dMRIPrep针对扩散加权成像的特定需求。这些工具共同支持从不同的MRI测量中提取高质量的生物标记物,助力于从个体到群体层面的神经科学发现。


这个概览提供了基础指导,详细文档和进一步的操作指南可在sMRIPrep的GitHub页面及其官方文档中找到。正确理解和实施最佳实践对于最大化利用sMRIPrep的能力至关重要。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5