EqMotion:等变多智能体运动预测指南
2024-09-26 04:55:27作者:曹令琨Iris
概述
EqMotion 是一个基于等变几何特征学习和不变交互推理的高效多智能体运动预测模型,由陈欣 Xin 等人在 CVPR 2023 上提出。本指南旨在帮助开发者理解和使用该项目,我们将分步骤介绍其目录结构、启动文件以及配置文件的相关信息。
1. 项目目录结构及介绍
项目的主要目录结构如下:
EqMotion/
├── n_body_system # 粒子动力学相关数据和代码
│ ├── dataset # 数据集文件夹
│ └── ...
├── md17 # 分子动力学数据处理与实验
│ ├── dataset # 数据准备
│ └── ...
├── h36m # 3D人体骨架动作预测数据与实验
│ ├── dataset # 人3.6M数据存放
│ └── ...
├── eth_ucy # 行人轨迹预测数据与实验
│ ├── dataset # 原始数据预处理
│ └── ...
├── main_{task}.py # 不同任务的主运行脚本(如main_nbody.py, main_md17.py)
├── LICENSE # 许可证文件
└── README.md # 项目说明文件
每个任务相关的子目录中,包含了该任务的数据准备脚本、预处理工具以及模型训练和测试的执行脚本。main_{task}.py 文件是各个预测任务的启动点,根据不同的场景选择不同的脚本进行实验。
2. 项目的启动文件介绍
EqMotion项目提供了多个用于不同场景预测的启动脚本。以粒子动力学预测为例,主要的启动文件是 main_nbody.py:
-
如何启动:
CUDA_VISIBLE_DEVICES=[GPU_ID] python main_nbody.py这里
[GPU_ID]需要替换为你希望使用的GPU编号。对于其他任务如人体骨架或行人轨迹预测,相应的修改脚本名称并按需调整参数。 -
参数说明:
- 运行时可能需要指定模型训练或评估的具体设置,如过去的长度(
--past_length)、未来的长度(--future_length)等。 - 特定场景下还有专门参数,例如分子动力学会有分子名(
--mol)的指定。
- 运行时可能需要指定模型训练或评估的具体设置,如过去的长度(
3. 项目的配置文件介绍
EqMotion项目并未明确提及外部配置文件,其配置更多地通过命令行参数来实现。这意味着,用户需要通过调用 main_{task}.py 脚本时附加的参数来配置模型的训练和评估过程。这些参数涵盖了数据路径、模型超参数、训练周期等关键设定。
虽然没有独立的配置文件,但在实际操作中,可以考虑使用Python的argparse库来自定义复杂配置或利用环境变量来间接实现配置管理,特别是在需要频繁更改设置的情况下。
示例配置命令
对于人体骨架运动预测,示例命令可能是这样的:
CUDA_VISIBLE_DEVICES=0 python main_h36m.py \
--past_length 10 --future_length 10 --channel 72 --train
这将使用第0号GPU,对短程预测任务进行训练,指定输入序列长度等参数。
通过以上介绍,开发者应该能够快速上手 EqMotion 项目,进行多智能体的运动预测实验。记住,针对特定需求调整参数,并确保系统环境满足项目依赖,如CUDA版本、Python环境和PyTorch库的正确安装。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
177
Ascend Extension for PyTorch
Python
339
402
React Native鸿蒙化仓库
JavaScript
302
355
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
暂无简介
Dart
770
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247