Pytorch Realtime Multi-Person Pose Estimation 项目教程
2024-09-17 21:03:21作者:何将鹤
1. 项目介绍
1.1 项目概述
Pytorch Realtime Multi-Person Pose Estimation 是一个基于 PyTorch 框架的实时多人姿态估计项目。该项目旨在通过深度学习技术,实时检测图像或视频中多个人的姿态,并标注出关键点。原项目代码基于 Caffe 框架,本项目将其移植到 PyTorch 框架下,以便更好地利用 PyTorch 的灵活性和易用性。
1.2 主要功能
- 实时多人姿态估计:能够在实时环境中检测并标注多个人的姿态。
- 数据预处理:提供了一系列数据预处理脚本,用于生成训练和测试所需的数据。
- 模型训练:支持训练自定义的姿态估计模型。
- 模型测试:提供测试脚本,用于评估模型的性能。
1.3 项目结构
- preprocessing:包含数据预处理的脚本。
- training:包含模型训练的脚本。
- testing:包含模型测试的脚本。
- caffe2pytorch:包含将 Caffe 模型转换为 PyTorch 模型的脚本。
- caffe_model:包含 Caffe 模型的相关文件。
2. 项目快速启动
2.1 环境配置
确保你已经安装了以下依赖:
- PyTorch 0.2.0_3
- Caffe(如果需要转换 Caffe 模型)
2.2 克隆项目
首先,克隆项目到本地:
git clone https://github.com/last-one/Pytorch_Realtime_Multi-Person_Pose_Estimation.git
cd Pytorch_Realtime_Multi-Person_Pose_Estimation
2.3 数据准备
进入 preprocessing 目录,生成训练和测试所需的 JSON 文件和掩码:
cd preprocessing
python generate_json_mask.py
2.4 模型训练
进入 training 目录,设置训练参数并开始训练:
cd ../training
sh train.sh
2.5 模型测试
进入 testing 目录,运行测试脚本:
cd ../testing
python test_script.py
3. 应用案例和最佳实践
3.1 应用案例
- 体育分析:在体育比赛中,实时分析运动员的姿态,帮助教练和分析师改进训练方法。
- 人机交互:在虚拟现实和增强现实中,实时检测用户的姿态,提供更自然的交互体验。
- 医疗康复:在医疗康复训练中,实时监测患者的姿态,帮助医生评估康复进度。
3.2 最佳实践
- 数据增强:在训练过程中,使用数据增强技术(如旋转、缩放、翻转等)来提高模型的泛化能力。
- 多阶段训练:采用多阶段训练策略,逐步优化模型的性能。
- 模型优化:使用模型优化技术(如剪枝、量化等)来减少模型的计算量和存储空间。
4. 典型生态项目
4.1 OpenPose
OpenPose 是一个广泛使用的开源项目,用于实时多人姿态估计。它支持多种平台和框架,包括 Caffe、TensorFlow 和 PyTorch。
4.2 TensorFlow Pose Estimation
TensorFlow Pose Estimation 是另一个基于 TensorFlow 框架的姿态估计项目,提供了丰富的模型和工具,支持多种应用场景。
4.3 DeepLabCut
DeepLabCut 是一个用于动物姿态估计的开源项目,广泛应用于神经科学和行为学研究中。
通过这些生态项目,开发者可以进一步扩展和优化姿态估计技术,应用于更多的领域和场景。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 Jetson TX2开发板官方资源完全指南:从入门到精通 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
186
201
暂无简介
Dart
629
142
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.54 K
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.11 K
624
仓颉编译器源码及 cjdb 调试工具。
C++
128
858