XTuner训练过程中RuntimeError问题的分析与解决
问题现象
在使用XTuner项目训练InternLM2模型时,用户遇到了一个典型的训练不稳定性问题:模型在前100多个迭代步骤中loss正常下降,但突然出现NaN值,并伴随"RuntimeError: probability tensor contains either inf, nan or element < 0"的错误提示。
可能原因分析
-
浮点精度问题:使用float16(fp16)进行训练时,数值范围较小(约6e-5到65504),容易出现数值下溢或上溢,导致NaN的出现。
-
学习率设置不当:过大的学习率可能导致参数更新幅度过大,使模型参数进入不稳定的数值区域。
-
数据质量问题:训练数据中包含异常值或不符合预期的输入,可能导致模型计算出问题。
-
梯度爆炸:在训练过程中梯度突然增大,导致参数更新后产生无效数值。
解决方案
-
调整学习率:适当降低学习率是解决训练不稳定问题的首选方案。可以先尝试将学习率减半,观察训练过程是否稳定。
-
使用bf16替代fp16:如果硬件支持(可通过torch.cuda.is_bf16_supported()检查),bf16具有与fp32相同的数值范围(约1e-38到3e38),但精度与fp16相当,能有效减少数值溢出问题。使用bf16时需要配合deepspeed_zero2配置。
-
梯度裁剪:实现梯度裁剪可以防止梯度爆炸问题,保持训练过程的稳定性。
-
数据检查:仔细检查训练数据集,确保输入数据在合理范围内,没有异常值或格式错误。
-
混合精度训练:可以考虑使用自动混合精度(AMP)训练,让框架自动管理不同层的精度,平衡训练速度和稳定性。
实践经验
在实际训练过程中,用户发现重新开始训练后问题没有复现,这表明问题可能具有一定的随机性。这种间歇性出现的问题通常与数值稳定性相关,而非确定性的数据或模型结构问题。
对于大模型训练,建议:
- 在训练初期密切监控loss变化
- 设置合理的checkpoint保存频率
- 使用学习率warmup策略
- 考虑使用更稳定的优化器如AdamW
结论
深度学习模型训练过程中的NaN问题通常与数值稳定性相关。通过调整训练参数、使用更合适的数值精度以及仔细检查数据,可以有效解决这类问题。XTuner作为训练框架,支持多种精度和优化策略,用户可以根据具体硬件条件和任务需求选择最适合的配置方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00