首页
/ XTuner训练过程中RuntimeError问题的分析与解决

XTuner训练过程中RuntimeError问题的分析与解决

2025-06-13 14:49:01作者:柏廷章Berta

问题现象

在使用XTuner项目训练InternLM2模型时,用户遇到了一个典型的训练不稳定性问题:模型在前100多个迭代步骤中loss正常下降,但突然出现NaN值,并伴随"RuntimeError: probability tensor contains either inf, nan or element < 0"的错误提示。

可能原因分析

  1. 浮点精度问题:使用float16(fp16)进行训练时,数值范围较小(约6e-5到65504),容易出现数值下溢或上溢,导致NaN的出现。

  2. 学习率设置不当:过大的学习率可能导致参数更新幅度过大,使模型参数进入不稳定的数值区域。

  3. 数据质量问题:训练数据中包含异常值或不符合预期的输入,可能导致模型计算出问题。

  4. 梯度爆炸:在训练过程中梯度突然增大,导致参数更新后产生无效数值。

解决方案

  1. 调整学习率:适当降低学习率是解决训练不稳定问题的首选方案。可以先尝试将学习率减半,观察训练过程是否稳定。

  2. 使用bf16替代fp16:如果硬件支持(可通过torch.cuda.is_bf16_supported()检查),bf16具有与fp32相同的数值范围(约1e-38到3e38),但精度与fp16相当,能有效减少数值溢出问题。使用bf16时需要配合deepspeed_zero2配置。

  3. 梯度裁剪:实现梯度裁剪可以防止梯度爆炸问题,保持训练过程的稳定性。

  4. 数据检查:仔细检查训练数据集,确保输入数据在合理范围内,没有异常值或格式错误。

  5. 混合精度训练:可以考虑使用自动混合精度(AMP)训练,让框架自动管理不同层的精度,平衡训练速度和稳定性。

实践经验

在实际训练过程中,用户发现重新开始训练后问题没有复现,这表明问题可能具有一定的随机性。这种间歇性出现的问题通常与数值稳定性相关,而非确定性的数据或模型结构问题。

对于大模型训练,建议:

  • 在训练初期密切监控loss变化
  • 设置合理的checkpoint保存频率
  • 使用学习率warmup策略
  • 考虑使用更稳定的优化器如AdamW

结论

深度学习模型训练过程中的NaN问题通常与数值稳定性相关。通过调整训练参数、使用更合适的数值精度以及仔细检查数据,可以有效解决这类问题。XTuner作为训练框架,支持多种精度和优化策略,用户可以根据具体硬件条件和任务需求选择最适合的配置方案。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0
kernelkernel
deepin linux kernel
C
22
5
WxJavaWxJava
微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22
cherry-studiocherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58