XTuner训练过程中RuntimeError问题的分析与解决
问题现象
在使用XTuner项目训练InternLM2模型时,用户遇到了一个典型的训练不稳定性问题:模型在前100多个迭代步骤中loss正常下降,但突然出现NaN值,并伴随"RuntimeError: probability tensor contains either inf, nan or element < 0"的错误提示。
可能原因分析
-
浮点精度问题:使用float16(fp16)进行训练时,数值范围较小(约6e-5到65504),容易出现数值下溢或上溢,导致NaN的出现。
-
学习率设置不当:过大的学习率可能导致参数更新幅度过大,使模型参数进入不稳定的数值区域。
-
数据质量问题:训练数据中包含异常值或不符合预期的输入,可能导致模型计算出问题。
-
梯度爆炸:在训练过程中梯度突然增大,导致参数更新后产生无效数值。
解决方案
-
调整学习率:适当降低学习率是解决训练不稳定问题的首选方案。可以先尝试将学习率减半,观察训练过程是否稳定。
-
使用bf16替代fp16:如果硬件支持(可通过torch.cuda.is_bf16_supported()检查),bf16具有与fp32相同的数值范围(约1e-38到3e38),但精度与fp16相当,能有效减少数值溢出问题。使用bf16时需要配合deepspeed_zero2配置。
-
梯度裁剪:实现梯度裁剪可以防止梯度爆炸问题,保持训练过程的稳定性。
-
数据检查:仔细检查训练数据集,确保输入数据在合理范围内,没有异常值或格式错误。
-
混合精度训练:可以考虑使用自动混合精度(AMP)训练,让框架自动管理不同层的精度,平衡训练速度和稳定性。
实践经验
在实际训练过程中,用户发现重新开始训练后问题没有复现,这表明问题可能具有一定的随机性。这种间歇性出现的问题通常与数值稳定性相关,而非确定性的数据或模型结构问题。
对于大模型训练,建议:
- 在训练初期密切监控loss变化
- 设置合理的checkpoint保存频率
- 使用学习率warmup策略
- 考虑使用更稳定的优化器如AdamW
结论
深度学习模型训练过程中的NaN问题通常与数值稳定性相关。通过调整训练参数、使用更合适的数值精度以及仔细检查数据,可以有效解决这类问题。XTuner作为训练框架,支持多种精度和优化策略,用户可以根据具体硬件条件和任务需求选择最适合的配置方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00