首页
/ XTuner训练过程中RuntimeError问题的分析与解决

XTuner训练过程中RuntimeError问题的分析与解决

2025-06-13 14:49:01作者:柏廷章Berta

问题现象

在使用XTuner项目训练InternLM2模型时,用户遇到了一个典型的训练不稳定性问题:模型在前100多个迭代步骤中loss正常下降,但突然出现NaN值,并伴随"RuntimeError: probability tensor contains either inf, nan or element < 0"的错误提示。

可能原因分析

  1. 浮点精度问题:使用float16(fp16)进行训练时,数值范围较小(约6e-5到65504),容易出现数值下溢或上溢,导致NaN的出现。

  2. 学习率设置不当:过大的学习率可能导致参数更新幅度过大,使模型参数进入不稳定的数值区域。

  3. 数据质量问题:训练数据中包含异常值或不符合预期的输入,可能导致模型计算出问题。

  4. 梯度爆炸:在训练过程中梯度突然增大,导致参数更新后产生无效数值。

解决方案

  1. 调整学习率:适当降低学习率是解决训练不稳定问题的首选方案。可以先尝试将学习率减半,观察训练过程是否稳定。

  2. 使用bf16替代fp16:如果硬件支持(可通过torch.cuda.is_bf16_supported()检查),bf16具有与fp32相同的数值范围(约1e-38到3e38),但精度与fp16相当,能有效减少数值溢出问题。使用bf16时需要配合deepspeed_zero2配置。

  3. 梯度裁剪:实现梯度裁剪可以防止梯度爆炸问题,保持训练过程的稳定性。

  4. 数据检查:仔细检查训练数据集,确保输入数据在合理范围内,没有异常值或格式错误。

  5. 混合精度训练:可以考虑使用自动混合精度(AMP)训练,让框架自动管理不同层的精度,平衡训练速度和稳定性。

实践经验

在实际训练过程中,用户发现重新开始训练后问题没有复现,这表明问题可能具有一定的随机性。这种间歇性出现的问题通常与数值稳定性相关,而非确定性的数据或模型结构问题。

对于大模型训练,建议:

  • 在训练初期密切监控loss变化
  • 设置合理的checkpoint保存频率
  • 使用学习率warmup策略
  • 考虑使用更稳定的优化器如AdamW

结论

深度学习模型训练过程中的NaN问题通常与数值稳定性相关。通过调整训练参数、使用更合适的数值精度以及仔细检查数据,可以有效解决这类问题。XTuner作为训练框架,支持多种精度和优化策略,用户可以根据具体硬件条件和任务需求选择最适合的配置方案。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0