LLMs-from-scratch项目中微调LLM分类任务时输出层处理分析
2025-05-01 15:49:42作者:范垣楠Rhoda
在LLMs-from-scratch项目的第六章示例中,展示了如何微调大型语言模型(LLM)用于分类任务。其中涉及到一个关键的技术细节:如何正确修改模型的输出层以适应分类任务需求。
输出层修改的技术背景
当我们将预训练的LLM用于分类任务时,通常需要调整模型的输出层。原始LLM的输出层(lm_head)设计用于语言模型任务,输出维度对应词汇表大小(如32000)。而分类任务通常只需要少量输出(如二分类任务只需2个输出)。
示例代码中的问题
在项目示例中,直接使用以下代码修改输出层:
peft_model.base_model.lm_head = torch.nn.Linear(...)
这会导致模型结构中意外地出现两个lm_head层:
- 原始的语言模型输出层(32000维)
- 新添加的分类输出层(2维)
正确的修改方式
经过分析,正确的做法应该是修改模型内部嵌套的lm_head层:
peft_model.base_model.model.lm_head = torch.nn.Linear(...)
这种差异源于HuggingFace模型实现的结构特点,其中base_model内部又嵌套了一个model对象,真正的输出层位于更深层的结构中。
技术原理分析
-
模型结构嵌套:现代LLM实现通常采用多层嵌套结构,base_model可能只是外层包装,真正的模型实现位于更深层次
-
PEFT适配:使用参数高效微调(PEFT)时,需要特别注意模型结构的访问路径,因为PEFT包装器可能改变了原始模型的结构组织方式
-
输出层替换:在分类任务中,完全替换输出层比添加新层更合理,可以避免参数冗余和计算资源浪费
实践建议
- 在修改模型结构前,先完整打印模型结构,了解各层的准确路径
- 对于分类任务,确保只保留一个输出层
- 注意输出层的输入维度需要与前一层匹配
- 微调完成后,验证模型输出是否符合预期维度
这个案例展示了在微调LLM时需要深入理解模型结构的重要性,特别是在使用PEFT等复杂技术时,准确访问模型内部组件是关键。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355