Modelscope/Swift项目中Grounding LoRA训练数据格式问题解析
2025-05-31 12:09:40作者:齐冠琰
在Modelscope/Swift项目中进行Grounding LoRA训练时,开发者可能会遇到一个典型的数据格式问题:模型输出的边界框信息中缺失类别标签。这个问题通常是由于训练数据格式不规范导致的,需要特别注意JSONL文件中ref-object与bbox的对应关系。
问题现象分析
当使用Qwen2-VL-7B-Instruct模型进行Grounding任务训练时,开发者提供的训练数据格式如下:
{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "<image>找到图像中的<ref-object><ref-object><ref-object><ref-object>"},
{"role": "assistant", "content": "<ref-object><bbox><bbox><bbox><bbox><bbox><bbox><bbox><ref-object><bbox><bbox><ref-object><bbox><bbox><ref-object><bbox>"}
],
"images": ["test2/images/14c7af6edb788fbf7ac606ee4abbd519.JPG"],
"objects": {
"ref": ["byq_jyztl", "dlsrdq_jyztl", "jyzps_cixuanshi", "jyzfdhj_cixuanshi"],
"bbox": [[1227,2055,1260,2106.0], ...]
}
}
训练过程中会出现两个明显问题:
- 训练日志显示模型输出的边界框信息缺少类别标签
- 推理结果中也只包含边界框坐标,没有对应的类别信息
根本原因
问题的核心在于训练数据中<ref-object>标签与ref数组中元素的对应关系不匹配。具体表现为:
- 用户消息中包含4个
<ref-object>标签 - 助理回复中包含4个
<ref-object>标签和12个<bbox>标签 - 但
ref数组中只有4个类别名称
这种不匹配导致模型无法正确学习到类别信息与边界框的对应关系。
解决方案
要解决这个问题,必须确保训练数据满足以下条件:
- 用户消息中的
<ref-object>数量必须等于助理回复中的<ref-object>数量 - 助理回复中的
<ref-object>数量必须等于ref数组的长度 - 每个
<ref-object>对应的<bbox>数量可以不同,但必须明确对应关系
正确的数据格式示例:
{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "<image>找到图像中的<ref-object><ref-object>"},
{"role": "assistant", "content": "<ref-object><bbox><bbox><ref-object><bbox>"}
],
"images": ["image_path.jpg"],
"objects": {
"ref": ["cat", "dog"],
"bbox": [[x1,y1,x2,y2], [x3,y3,x4,y4], [x5,y5,x6,y6]]
}
}
最佳实践建议
- 数据验证:在训练前编写脚本检查数据格式是否符合规范
- 可视化检查:将标注数据可视化,确认每个边界框都有正确的类别标签
- 逐步测试:先使用小规模数据集测试,确认模型能正确学习类别信息
- 版本控制:记录每次数据修改的版本,便于问题追踪
总结
Grounding任务的数据准备需要特别注意标签与标注信息的对应关系。在Modelscope/Swift项目中,确保<ref-object>、<bbox>和ref数组之间的严格对应是训练成功的关键。开发者应该建立规范的数据检查流程,避免因数据格式问题导致模型训练失败。
通过规范数据格式,开发者可以充分利用Qwen2-VL等视觉语言模型的强大能力,实现高质量的物体检测和定位任务。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
183
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
740
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
348
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1