Modelscope/Swift项目中Grounding LoRA训练数据格式问题解析
2025-05-31 06:06:31作者:齐冠琰
在Modelscope/Swift项目中进行Grounding LoRA训练时,开发者可能会遇到一个典型的数据格式问题:模型输出的边界框信息中缺失类别标签。这个问题通常是由于训练数据格式不规范导致的,需要特别注意JSONL文件中ref-object与bbox的对应关系。
问题现象分析
当使用Qwen2-VL-7B-Instruct模型进行Grounding任务训练时,开发者提供的训练数据格式如下:
{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "<image>找到图像中的<ref-object><ref-object><ref-object><ref-object>"},
{"role": "assistant", "content": "<ref-object><bbox><bbox><bbox><bbox><bbox><bbox><bbox><ref-object><bbox><bbox><ref-object><bbox><bbox><ref-object><bbox>"}
],
"images": ["test2/images/14c7af6edb788fbf7ac606ee4abbd519.JPG"],
"objects": {
"ref": ["byq_jyztl", "dlsrdq_jyztl", "jyzps_cixuanshi", "jyzfdhj_cixuanshi"],
"bbox": [[1227,2055,1260,2106.0], ...]
}
}
训练过程中会出现两个明显问题:
- 训练日志显示模型输出的边界框信息缺少类别标签
- 推理结果中也只包含边界框坐标,没有对应的类别信息
根本原因
问题的核心在于训练数据中<ref-object>
标签与ref
数组中元素的对应关系不匹配。具体表现为:
- 用户消息中包含4个
<ref-object>
标签 - 助理回复中包含4个
<ref-object>
标签和12个<bbox>
标签 - 但
ref
数组中只有4个类别名称
这种不匹配导致模型无法正确学习到类别信息与边界框的对应关系。
解决方案
要解决这个问题,必须确保训练数据满足以下条件:
- 用户消息中的
<ref-object>
数量必须等于助理回复中的<ref-object>
数量 - 助理回复中的
<ref-object>
数量必须等于ref
数组的长度 - 每个
<ref-object>
对应的<bbox>
数量可以不同,但必须明确对应关系
正确的数据格式示例:
{
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "<image>找到图像中的<ref-object><ref-object>"},
{"role": "assistant", "content": "<ref-object><bbox><bbox><ref-object><bbox>"}
],
"images": ["image_path.jpg"],
"objects": {
"ref": ["cat", "dog"],
"bbox": [[x1,y1,x2,y2], [x3,y3,x4,y4], [x5,y5,x6,y6]]
}
}
最佳实践建议
- 数据验证:在训练前编写脚本检查数据格式是否符合规范
- 可视化检查:将标注数据可视化,确认每个边界框都有正确的类别标签
- 逐步测试:先使用小规模数据集测试,确认模型能正确学习类别信息
- 版本控制:记录每次数据修改的版本,便于问题追踪
总结
Grounding任务的数据准备需要特别注意标签与标注信息的对应关系。在Modelscope/Swift项目中,确保<ref-object>
、<bbox>
和ref
数组之间的严格对应是训练成功的关键。开发者应该建立规范的数据检查流程,避免因数据格式问题导致模型训练失败。
通过规范数据格式,开发者可以充分利用Qwen2-VL等视觉语言模型的强大能力,实现高质量的物体检测和定位任务。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析4 freeCodeCamp博客页面工作坊中的断言方法优化建议5 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp音乐播放器项目中的函数调用问题解析9 freeCodeCamp论坛排行榜项目中的错误日志规范要求10 freeCodeCamp 课程中关于角色与职责描述的语法优化建议
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
884
524

openGauss kernel ~ openGauss is an open source relational database management system
C++
136
187

React Native鸿蒙化仓库
C++
182
264

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
364
381

deepin linux kernel
C
22
5

方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
113
45

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
84
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
831
23

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
736
105