Generative-and-Discriminative-Voxel-Modeling 项目教程
2024-09-25 08:37:27作者:余洋婵Anita
1. 项目介绍
项目概述
Generative-and-Discriminative-Voxel-Modeling 是一个基于卷积神经网络(CNN)的项目,专注于三维数据的生成和判别建模。该项目包含以下主要功能:
- 生成模型:使用变分自编码器(VAE)生成三维体素数据。
- 判别模型:使用卷积神经网络进行三维对象的分类。
- 用户界面:提供一个图形用户界面(GUI),用于探索VAE学习到的潜在空间。
主要贡献
- 训练体素基变分自编码器的方法。
- 用于探索自编码器学习到的潜在空间的GUI。
- 用于对象分类的深度卷积神经网络架构。
2. 项目快速启动
环境准备
在运行项目之前,请确保您的环境中安装了以下依赖:
- Theano
- Lasagne
- VTK 及其 Python 绑定
- cuDNN
- Matplotlib(可选,用于绘制潜在空间映射)
下载项目
git clone https://github.com/ajbrock/Generative-and-Discriminative-Voxel-Modeling.git
cd Generative-and-Discriminative-Voxel-Modeling
设置环境变量
将项目主目录添加到 PYTHONPATH 中,或者在您要运行的脚本中取消注释并修改 sys.path.insert 行。
运行 GUI
项目中包含一个预训练的模型(VAE.npz),可以使用以下命令运行 GUI:
python Generative/GUI.py Generative/VAE.py datasets/shapenet10_test_nr.tar Generative/VAE.npz
训练 VAE
如果您希望训练自己的模型,可以使用以下命令:
python Generative/train_VAE.py Generative/VAE.py datasets/shapenet10_train.tar datasets/shapenet10_test.tar
训练分类器
使用以下命令训练分类器:
python Discriminative/train.py Discriminative/VRN.py datasets/modelnet40_rot_train.npz
测试分类器
使用以下命令测试分类器的性能:
python Discriminative/test.py Discriminative/VRN.py datasets/modelnet40_rot_test.npz
3. 应用案例和最佳实践
应用案例
- 三维形状建模:使用VAE生成新的三维形状,适用于游戏开发、动画制作等领域。
- 对象分类:使用卷积神经网络对三维对象进行分类,适用于机器人视觉、自动驾驶等领域。
最佳实践
- 数据准备:确保数据集格式正确,特别是体素数据的格式。
- 超参数调优:根据具体任务调整VAE和CNN的超参数,以获得最佳性能。
- 模型评估:使用测试集评估模型的性能,并根据结果进行进一步优化。
4. 典型生态项目
相关项目
- VoxNet:一个用于三维对象识别的卷积神经网络项目,与本项目有相似的应用场景。
- 3D GAN:一个使用生成对抗网络(GAN)生成三维形状的项目,可以与VAE结合使用,提升生成模型的多样性。
社区资源
- GitHub 社区:参与 GitHub 上的讨论,获取最新的项目更新和社区支持。
- arXiv 论文:阅读相关领域的最新研究论文,了解最新的技术进展。
通过以上步骤,您可以快速启动并使用 Generative-and-Discriminative-Voxel-Modeling 项目,进行三维数据的生成和分类任务。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26