NonSteamLaunchers项目v4.1.5版本发布:桌面与插件双版本优化
NonSteamLaunchers是一个旨在让Steam Deck用户能够方便地安装和管理非Steam游戏平台的工具项目。该项目提供了两种使用方式:桌面版本和Decky插件版本,让用户可以根据自己的使用习惯选择最适合的方案。
桌面版本的核心改进
本次v4.1.5版本对桌面版本进行了多项质量改进和功能增强:
-
通知系统优化:改进了桌面版本的通知机制,现在用户可以更清晰地了解脚本的运行状态和进度。
-
IndieGala游戏扫描支持:新增了对IndieGala客户端的游戏扫描功能,虽然开发者表示这个功能目前还比较基础,但已经能够正常工作。
-
游戏存档备份增强:现在桌面版本会在每次启动时自动使用ludusavi工具备份游戏存档,备份路径为
/home/deck/NSLGameSaves
。相比之前只在下载启动器时才进行备份的机制,这大大提高了存档安全性。 -
多发行版兼容性:针对其他Linux发行版做了更多适配工作,提高了跨发行版的兼容性。
-
权限简化:移除了插件安装时的sudo密码要求,简化了安装流程。
Decky插件版本的新特性
插件版本同样获得了多项更新:
-
启动视频功能:现在插件能够自动获取并匹配游戏的启动视频。用户可以通过"随机播放"功能来查看是否有可用的启动视频。需要注意的是,并非所有游戏都有对应的启动视频资源。
-
性能优化:对插件进行了性能调优,提升了运行效率。
-
流媒体站点改进:简化了流媒体站点的使用流程,现在不再需要开启"自动扫描"功能。
双版本使用指南
项目现在提供了两个不同的.desktop文件:
- NonSteamLaunchers.desktop:完整的桌面版本,包含安装最新NSL Decky Loader插件的选项。
- NSLPlugin.desktop:专为已安装Decky Loader的用户设计,可以直接安装/更新插件而无需进入桌面模式。
对于Windows用户,安装流程略有不同:
- 首先运行NSLPluginWindows.exe,这会创建必要的cef调试文件。
- 然后根据需要运行No_console.exe或Plugin Loader.exe。
- 进入游戏模式或大屏幕模式即可使用Decky Loader插件。
技术实现亮点
从技术角度来看,这个版本有几个值得注意的实现:
-
存档备份机制:采用ludusavi作为底层工具,实现了自动化的游戏存档备份,这对游戏进度的保护非常重要。
-
跨平台支持:通过不同的安装包和.desktop文件,实现了对Linux桌面环境和Windows环境的统一支持。
-
权限管理优化:移除sudo依赖不仅提高了易用性,也增强了安全性,避免了不必要的权限提升。
-
启动视频匹配:自动获取游戏启动视频的功能展示了项目对Steam Deck特性的深度集成。
这个版本体现了NonSteamLaunchers项目持续改进的理念,既增强了核心功能,又优化了用户体验,特别是对多平台和多发行版的支持,使得更多用户能够受益于这个工具。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0331- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









