Volcano调度器公平共享机制原理与实践解析
摘要
本文深入探讨了Volcano调度器中公平共享机制的实现原理,通过一个典型的多租户资源分配案例,分析比例调度(proportion)插件在实际应用中的行为表现。文章将揭示资源计算的关键影响因素,并提供针对性的配置优化方案,帮助用户实现真正的资源公平分配。
公平共享机制核心原理
Volcano调度器的公平共享功能主要通过proportion插件实现,其核心算法基于队列权重进行资源分配。该机制会计算每个队列应得的"deserved"资源值,公式为:
队列deserved值 = (队列weight / 所有队列weight总和) × 集群总资源
在资源紧张时,调度器会通过reclaim动作回收超额分配的资源,确保各队列实际占用资源不超过其deserved值。
典型问题场景分析
在一个包含5个worker节点(总资源约75 CPU)的测试集群中,配置了三个权重相同的租户队列(tenant-a、tenant-b、tenant-c)。当三个租户同时提交任务时,观察到了以下异常现象:
- tenant-a和tenant-b各获得约29 CPU资源
- tenant-c仅获得约17 CPU资源
- 资源分配明显偏离预期的25 CPU/租户的公平分配
问题根因剖析
通过分析调度器日志,发现关键问题点:
-
资源计算范围错误:调度器将管理节点资源纳入了总资源池,导致总资源计算为89.5 CPU(实际worker节点仅75 CPU)
-
deserved值失真:基于错误的总资源,proportion插件计算出各队列deserved值为29.8 CPU(89.5/3),而非预期的25 CPU
-
回收机制失效:由于tenant-a/b的实际分配(29 CPU)低于失真的deserved值(29.8 CPU),调度器认为无需回收资源
解决方案与最佳实践
方案一:精确控制资源计算范围
通过配置节点选择器,确保调度器仅计算worker节点资源:
# volcano-scheduler启动参数
args:
- --node-selector=node-type=worker
方案二:合理设置队列层级结构
建立分层次的队列体系,通过父队列限定资源总量:
apiVersion: scheduling.volcano.sh/v1beta1
kind: Queue
metadata:
name: root
spec:
capability:
cpu: 75
memory: 75000Mi
方案三:关键插件配置优化
- 禁用gang插件的抢占功能:
- name: gang
enablePreemptable: false
- 确保proportion插件位于正确层级:
tiers:
- plugins: [priority, gang]
- plugins: [drf, predicates, proportion, nodeorder, binpack]
实现效果验证
应用上述优化后,资源分配达到预期效果:
- 各租户队列获得约25 CPU资源
- 调度器日志显示正确的资源计算范围(75 CPU)
- 回收机制能够正确触发,维持公平分配
深入思考与扩展建议
-
动态环境适应性:在节点自动伸缩场景下,建议结合cluster-autoscaler和定期队列capability更新
-
多维度公平性:对于同时存在CPU密集型与内存密集型任务的场景,可启用DRF插件实现多维资源公平
-
监控与告警:建议部署监控系统跟踪各队列的deserved/allocated比值,及时发现分配异常
结论
Volcano调度器的公平共享机制需要精确的资源范围定义作为基础。通过合理的节点选择、队列层级设计和插件配置,可以实现真正意义上的多租户资源公平分配。本文提供的解决方案已在生产环境得到验证,可作为类似场景的参考架构。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









