解决Ragas评估框架中非英语语言答案相关性指标异常问题
2025-05-26 12:26:02作者:郜逊炳
问题背景
在Ragas评估框架的实际应用中,许多开发者发现当处理中文等非英语语言时,答案相关性(Answer Relevancy)指标表现异常。这一问题源于框架内部生成的对比问题默认使用英语,导致与原始非英语问题的嵌入向量差异过大,从而影响了评估结果的准确性。
问题分析
Ragas框架的AnswerRelevancy指标工作原理是:
- 根据提供的答案生成一个对应的问题
- 计算原始问题与生成问题的嵌入相似度
- 基于相似度给出评分
当处理中文内容时,框架仍会生成英文问题,导致中文原始问题与英文生成问题的嵌入向量差异显著,最终评分偏低。这种语言不匹配问题会严重影响评估结果的可靠性。
解决方案
Ragas框架提供了语言适配功能,可以解决这一问题。以下是具体实现步骤:
1. 初始化评估组件
首先需要准备必要的评估组件,包括LLM实例和嵌入模型:
from ragas.metrics import AnswerRelevancy
from ragas.llms import LangchainLLMWrapper
# 初始化LLM实例(用于评估)
llm2 = loadLLM2("OpenAI") # 示例中使用OpenAI
# 初始化用于语言适配的LLM包装器
llm3 = LangchainLLMWrapper(llm2)
# 初始化AnswerRelevancy指标
answer_relevancy = AnswerRelevancy(
name="answer_relevancy",
strictness=3,
embeddings=embeddings
)
2. 语言适配
关键步骤是将评估提示词(prompt)适配为目标语言:
import asyncio
async def adapt_prompt():
adapted_prompts = await answer_relevancy.adapt_prompts(
language="chinese", # 注意使用小写
llm=llm3
)
return adapted_prompts
# 运行适配函数
adapted_prompts = asyncio.run(adapt_prompt())
# 设置适配后的提示词
answer_relevancy.set_prompts(**adapted_prompts)
3. 执行评估
完成语言适配后,即可正常执行评估:
from ragas import evaluate
score = evaluate(
dataset=dataset,
metrics=[answer_relevancy],
llm=llm2,
embeddings=embeddings
)
# 查看结果
df = score.to_pandas()[['answer_relevancy']]
技术要点
-
语言适配机制:Ragas通过
adapt_prompts
方法将评估提示词转换为目标语言,确保生成的问题与原始问题语言一致。 -
LLM包装器:必须使用
LangchainLLMWrapper
包装LLM实例,这是语言适配功能正常工作的前提。 -
语言参数格式:目标语言参数必须使用小写形式(如"chinese"而非"Chinese")。
-
异步处理:语言适配操作是异步的,需要使用
asyncio.run()
执行。
实际效果
适配后的提示词会将示例转换为目标语言,例如中文适配后会包含类似内容:
{'response_relevance_prompt': ResponseRelevancePrompt(
instruction=生成给定答案的问题并判断答案是否含糊...,
examples=[
(ResponseRelevanceInput(response='阿尔伯特·爱因斯坦出生在德国。'),
ResponseRelevanceOutput(question='阿尔伯特·爱因斯坦出生在哪里?', noncommittal=0)
],
language=chinese
)}
这种语言一致性确保了嵌入向量的可比性,使评估结果更加准确可靠。
总结
Ragas框架的多语言支持能力通过语言适配机制实现,开发者只需正确配置即可解决非英语语言评估异常问题。这一功能不仅适用于中文,也可扩展至其他语言,为多语言RAG应用的评估提供了可靠解决方案。正确使用这一功能需要注意LLM包装器的使用、语言参数的格式以及异步调用方式等技术细节。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
177
262

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
864
512

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
261
302

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K