解决Ragas评估框架中非英语语言答案相关性指标异常问题
2025-05-26 16:21:00作者:郜逊炳
问题背景
在Ragas评估框架的实际应用中,许多开发者发现当处理中文等非英语语言时,答案相关性(Answer Relevancy)指标表现异常。这一问题源于框架内部生成的对比问题默认使用英语,导致与原始非英语问题的嵌入向量差异过大,从而影响了评估结果的准确性。
问题分析
Ragas框架的AnswerRelevancy指标工作原理是:
- 根据提供的答案生成一个对应的问题
- 计算原始问题与生成问题的嵌入相似度
- 基于相似度给出评分
当处理中文内容时,框架仍会生成英文问题,导致中文原始问题与英文生成问题的嵌入向量差异显著,最终评分偏低。这种语言不匹配问题会严重影响评估结果的可靠性。
解决方案
Ragas框架提供了语言适配功能,可以解决这一问题。以下是具体实现步骤:
1. 初始化评估组件
首先需要准备必要的评估组件,包括LLM实例和嵌入模型:
from ragas.metrics import AnswerRelevancy
from ragas.llms import LangchainLLMWrapper
# 初始化LLM实例(用于评估)
llm2 = loadLLM2("OpenAI") # 示例中使用OpenAI
# 初始化用于语言适配的LLM包装器
llm3 = LangchainLLMWrapper(llm2)
# 初始化AnswerRelevancy指标
answer_relevancy = AnswerRelevancy(
name="answer_relevancy",
strictness=3,
embeddings=embeddings
)
2. 语言适配
关键步骤是将评估提示词(prompt)适配为目标语言:
import asyncio
async def adapt_prompt():
adapted_prompts = await answer_relevancy.adapt_prompts(
language="chinese", # 注意使用小写
llm=llm3
)
return adapted_prompts
# 运行适配函数
adapted_prompts = asyncio.run(adapt_prompt())
# 设置适配后的提示词
answer_relevancy.set_prompts(**adapted_prompts)
3. 执行评估
完成语言适配后,即可正常执行评估:
from ragas import evaluate
score = evaluate(
dataset=dataset,
metrics=[answer_relevancy],
llm=llm2,
embeddings=embeddings
)
# 查看结果
df = score.to_pandas()[['answer_relevancy']]
技术要点
-
语言适配机制:Ragas通过
adapt_prompts方法将评估提示词转换为目标语言,确保生成的问题与原始问题语言一致。 -
LLM包装器:必须使用
LangchainLLMWrapper包装LLM实例,这是语言适配功能正常工作的前提。 -
语言参数格式:目标语言参数必须使用小写形式(如"chinese"而非"Chinese")。
-
异步处理:语言适配操作是异步的,需要使用
asyncio.run()执行。
实际效果
适配后的提示词会将示例转换为目标语言,例如中文适配后会包含类似内容:
{'response_relevance_prompt': ResponseRelevancePrompt(
instruction=生成给定答案的问题并判断答案是否含糊...,
examples=[
(ResponseRelevanceInput(response='阿尔伯特·爱因斯坦出生在德国。'),
ResponseRelevanceOutput(question='阿尔伯特·爱因斯坦出生在哪里?', noncommittal=0)
],
language=chinese
)}
这种语言一致性确保了嵌入向量的可比性,使评估结果更加准确可靠。
总结
Ragas框架的多语言支持能力通过语言适配机制实现,开发者只需正确配置即可解决非英语语言评估异常问题。这一功能不仅适用于中文,也可扩展至其他语言,为多语言RAG应用的评估提供了可靠解决方案。正确使用这一功能需要注意LLM包装器的使用、语言参数的格式以及异步调用方式等技术细节。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878