解决Ragas评估框架中非英语语言答案相关性指标异常问题
2025-05-26 07:45:33作者:郜逊炳
问题背景
在Ragas评估框架的实际应用中,许多开发者发现当处理中文等非英语语言时,答案相关性(Answer Relevancy)指标表现异常。这一问题源于框架内部生成的对比问题默认使用英语,导致与原始非英语问题的嵌入向量差异过大,从而影响了评估结果的准确性。
问题分析
Ragas框架的AnswerRelevancy指标工作原理是:
- 根据提供的答案生成一个对应的问题
- 计算原始问题与生成问题的嵌入相似度
- 基于相似度给出评分
当处理中文内容时,框架仍会生成英文问题,导致中文原始问题与英文生成问题的嵌入向量差异显著,最终评分偏低。这种语言不匹配问题会严重影响评估结果的可靠性。
解决方案
Ragas框架提供了语言适配功能,可以解决这一问题。以下是具体实现步骤:
1. 初始化评估组件
首先需要准备必要的评估组件,包括LLM实例和嵌入模型:
from ragas.metrics import AnswerRelevancy
from ragas.llms import LangchainLLMWrapper
# 初始化LLM实例(用于评估)
llm2 = loadLLM2("OpenAI") # 示例中使用OpenAI
# 初始化用于语言适配的LLM包装器
llm3 = LangchainLLMWrapper(llm2)
# 初始化AnswerRelevancy指标
answer_relevancy = AnswerRelevancy(
name="answer_relevancy",
strictness=3,
embeddings=embeddings
)
2. 语言适配
关键步骤是将评估提示词(prompt)适配为目标语言:
import asyncio
async def adapt_prompt():
adapted_prompts = await answer_relevancy.adapt_prompts(
language="chinese", # 注意使用小写
llm=llm3
)
return adapted_prompts
# 运行适配函数
adapted_prompts = asyncio.run(adapt_prompt())
# 设置适配后的提示词
answer_relevancy.set_prompts(**adapted_prompts)
3. 执行评估
完成语言适配后,即可正常执行评估:
from ragas import evaluate
score = evaluate(
dataset=dataset,
metrics=[answer_relevancy],
llm=llm2,
embeddings=embeddings
)
# 查看结果
df = score.to_pandas()[['answer_relevancy']]
技术要点
-
语言适配机制:Ragas通过
adapt_prompts方法将评估提示词转换为目标语言,确保生成的问题与原始问题语言一致。 -
LLM包装器:必须使用
LangchainLLMWrapper包装LLM实例,这是语言适配功能正常工作的前提。 -
语言参数格式:目标语言参数必须使用小写形式(如"chinese"而非"Chinese")。
-
异步处理:语言适配操作是异步的,需要使用
asyncio.run()执行。
实际效果
适配后的提示词会将示例转换为目标语言,例如中文适配后会包含类似内容:
{'response_relevance_prompt': ResponseRelevancePrompt(
instruction=生成给定答案的问题并判断答案是否含糊...,
examples=[
(ResponseRelevanceInput(response='阿尔伯特·爱因斯坦出生在德国。'),
ResponseRelevanceOutput(question='阿尔伯特·爱因斯坦出生在哪里?', noncommittal=0)
],
language=chinese
)}
这种语言一致性确保了嵌入向量的可比性,使评估结果更加准确可靠。
总结
Ragas框架的多语言支持能力通过语言适配机制实现,开发者只需正确配置即可解决非英语语言评估异常问题。这一功能不仅适用于中文,也可扩展至其他语言,为多语言RAG应用的评估提供了可靠解决方案。正确使用这一功能需要注意LLM包装器的使用、语言参数的格式以及异步调用方式等技术细节。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-Thinking暂无简介Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
295
2.63 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
187
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
359
2.3 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
147
仓颉编译器源码及 cjdb 调试工具。
C++
122
430
仓颉编程语言运行时与标准库。
Cangjie
130
444