Ragas评估框架中LLM模型的作用解析
2025-05-26 23:24:29作者:滑思眉Philip
在Ragas评估框架的实际应用中,开发者常常会遇到一个核心疑问:为什么在已经具备完整问答对(包含问题、参考答案、生成答案和上下文)的数据集上,仍然需要依赖大型语言模型(LLM)进行指标评估?本文将从技术实现角度深入剖析这一设计决策背后的原理。
生成式系统的评估挑战
传统问答系统的评估可以直接通过字符串匹配等方式进行,但生成式AI系统存在两个本质差异:
-
答案多样性问题
生成式系统的正确答案往往不唯一,例如"中国的首都是?"的参考答案可能是"北京",而模型生成"中国首都北京"同样正确。此时简单的文本相似度计算会失效,需要LLM的语义理解能力来判断答案的等价性。 -
上下文相关性判定
对于检索增强生成(RAG)系统,评估上下文与问题的相关性时,人工标注成本极高。例如计算上下文召回率(Context Recall)时,需要判断所有相关事实是否都被检索到,这本质上是个开放域问题。
核心指标的技术实现
答案正确性评估
Ragas的答案正确度(Answer Correctness)指标采用三级评估体系:
- 事实一致性:生成答案是否包含参考答案的所有关键事实
- 语义等价性:不同表述方式是否传达相同语义
- 完整性:是否遗漏重要信息
这种评估必须依赖LLM的推理能力,传统基于规则或嵌入向量的方法难以处理语义层面的细微差别。
检索质量评估
上下文精确度(Context Precision)和召回率的计算需要:
- 自动识别上下文中的支持性证据
- 构建问题相关的理想证据集合
- 计算两者间的覆盖关系
该过程通过LLM实现以下功能:
- 证据提取:从长文本中识别事实片段
- 相关性判断:无需预定义标签体系
- 集合运算:动态构建评估基准
替代方案对比
虽然理论上可以尝试以下非LLM方案,但都存在明显局限:
- 规则引擎:无法适应语言多样性
- 嵌入模型:缺乏细粒度推理能力
- 传统NLP工具:需要定制特征工程
实践建议
对于希望减少LLM依赖的场景,可以考虑:
- 混合评估策略:对确定性指标(如存在性检查)使用规则方法
- 本地轻量模型:使用量化后的开源模型
- 缓存机制:对稳定问题缓存评估结果
Ragas的这种设计反映了当前生成式AI评估的前沿思路——在保证评估质量的前提下,通过LLM的通用能力降低人工标注成本,这种权衡对于快速迭代的AI系统尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
Ascend Extension for PyTorch
Python
343
410
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
602
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
181
暂无简介
Dart
775
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
895