Ragas评估框架中LLM模型的作用解析
2025-05-26 23:24:29作者:滑思眉Philip
在Ragas评估框架的实际应用中,开发者常常会遇到一个核心疑问:为什么在已经具备完整问答对(包含问题、参考答案、生成答案和上下文)的数据集上,仍然需要依赖大型语言模型(LLM)进行指标评估?本文将从技术实现角度深入剖析这一设计决策背后的原理。
生成式系统的评估挑战
传统问答系统的评估可以直接通过字符串匹配等方式进行,但生成式AI系统存在两个本质差异:
-
答案多样性问题
生成式系统的正确答案往往不唯一,例如"中国的首都是?"的参考答案可能是"北京",而模型生成"中国首都北京"同样正确。此时简单的文本相似度计算会失效,需要LLM的语义理解能力来判断答案的等价性。 -
上下文相关性判定
对于检索增强生成(RAG)系统,评估上下文与问题的相关性时,人工标注成本极高。例如计算上下文召回率(Context Recall)时,需要判断所有相关事实是否都被检索到,这本质上是个开放域问题。
核心指标的技术实现
答案正确性评估
Ragas的答案正确度(Answer Correctness)指标采用三级评估体系:
- 事实一致性:生成答案是否包含参考答案的所有关键事实
- 语义等价性:不同表述方式是否传达相同语义
- 完整性:是否遗漏重要信息
这种评估必须依赖LLM的推理能力,传统基于规则或嵌入向量的方法难以处理语义层面的细微差别。
检索质量评估
上下文精确度(Context Precision)和召回率的计算需要:
- 自动识别上下文中的支持性证据
- 构建问题相关的理想证据集合
- 计算两者间的覆盖关系
该过程通过LLM实现以下功能:
- 证据提取:从长文本中识别事实片段
- 相关性判断:无需预定义标签体系
- 集合运算:动态构建评估基准
替代方案对比
虽然理论上可以尝试以下非LLM方案,但都存在明显局限:
- 规则引擎:无法适应语言多样性
- 嵌入模型:缺乏细粒度推理能力
- 传统NLP工具:需要定制特征工程
实践建议
对于希望减少LLM依赖的场景,可以考虑:
- 混合评估策略:对确定性指标(如存在性检查)使用规则方法
- 本地轻量模型:使用量化后的开源模型
- 缓存机制:对稳定问题缓存评估结果
Ragas的这种设计反映了当前生成式AI评估的前沿思路——在保证评估质量的前提下,通过LLM的通用能力降低人工标注成本,这种权衡对于快速迭代的AI系统尤为重要。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347