【亲测免费】 Multimodal-CoT 项目教程
2026-01-17 09:11:06作者:伍希望
项目介绍
Multimodal-CoT 是一个由亚马逊科学团队开发的大型语言模型,专注于结合视觉和语言特征进行复杂推理任务。该模型通过思维链(CoT)提示技术,在多模态环境中表现出色。项目的主要创新在于通过融合视觉和语言特征来微调小型语言模型,以执行 CoT 推理,从而减少模型产生幻觉推理模式的倾向。
项目快速启动
环境设置
首先,克隆项目仓库到本地:
git clone https://github.com/amazon-science/mm-cot.git
cd mm-cot
安装依赖
安装所需的Python包:
pip install -r requirements.txt
运行示例
以下是运行基本推理任务的示例代码:
# 基本原理生成
CUDA_VISIBLE_DEVICES=0 1 2 3 python main.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg rationale --img_type vit \
--bs 2 --eval_bs 4 --epoch 50 --lr 5e-5 --output_len 512 \
--use_caption --use_generate --prompt_format QCM-E \
--output_dir experiments --evaluate_dir models/mm-cot-large-rationale
# 答案推理
CUDA_VISIBLE_DEVICES=0 1 2 3 python main_central.py \
--data_root data/ScienceQA/data \
--caption_file data/instruct_captions.json \
--model declare-lab/flan-alpaca-large \
--user_msg answer --img_type vit \
--bs 4 --eval_bs 8 --epoch 50 --lr 5e-5 --output_len 64
应用案例和最佳实践
案例一:科学问题解答
Multimodal-CoT 在 ScienceQA 数据集上表现优异,该数据集结合了图像和文本作为上下文,模型能够生成逻辑依据并推理出答案。
案例二:视觉问答
在视觉问答任务中,Multimodal-CoT 通过结合视觉特征和文本信息,能够更准确地理解问题并给出合理的答案。
最佳实践
- 数据预处理:确保图像和文本数据的质量和一致性。
- 模型微调:根据具体任务微调模型参数,以达到最佳性能。
- 多模态融合:合理设计视觉和语言特征的融合策略,以提高推理的准确性。
典型生态项目
相关项目一:UnifiedQA
UnifiedQA 是一个用于多种问答任务的统一模型,Multimodal-CoT 在其基础上进行了扩展和优化,以适应多模态环境。
相关项目二:Flan-Alpaca
Flan-Alpaca 是一个大型语言模型,Multimodal-CoT 使用了其权重作为初始化点,并在 ScienceQA 数据集上进行了微调。
通过这些生态项目的支持,Multimodal-CoT 能够更好地集成和利用多模态信息,提升在复杂推理任务中的表现。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
535
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178