Liger-Kernel项目中广义JSD散度的实现与优化
2025-06-10 07:20:37作者:卓艾滢Kingsley
引言
在机器学习领域,衡量概率分布之间的差异是一个基础而重要的问题。KL散度(Kullback-Leibler Divergence)是最常用的度量方法之一,但它具有不对称性,这促使研究人员开发出对称的度量方式,如Jensen-Shannon散度(JSD)。近期,Liger-Kernel项目团队在实现广义JSD散度方面取得了重要进展。
JSD散度的数学基础
传统JSD散度可以看作是KL散度的对称化版本,它定义为两个KL散度的平均:
JSD(P||Q) = 1/2 KL(P||M) + 1/2 KL(Q||M)
其中M=(P+Q)/2是P和Q的平均分布。广义JSD则引入了混合参数β,允许在正向KL和反向KL之间进行平滑插值:
JSD_β(P||Q) = β KL(P||M) + (1-β) KL(Q||M)
其中M=βP + (1-β)Q。当β=0.5时,退化为标准JSD散度;当β=0时,相当于反向KL散度;当β=1时,相当于正向KL散度。
实现细节
在Liger-Kernel项目中,广义JSD的实现采用了以下数学表达式:
JSD(X,Y,β) = ∑[βPY + (1-β)QX - M logM]
其中X=logQ,Y=logP,M=βP + (1-β)Q。对应的梯度计算为:
∂JSD/∂X_i = (1-β)Q_i(X_i - logM_i)
这种实现方式在数值计算上具有较好的稳定性,同时保持了计算效率。
边界情况的处理
对于β=0和β=1这两种边界情况,项目团队建议直接调用专门优化的正向KL和反向KL核函数,而不是通过广义JSD的实现来处理。这是因为:
- 数值稳定性考虑:在边界情况下,直接使用专用实现可以避免潜在的数值问题
- 性能优化:专用核函数通常经过特殊优化,计算效率更高
- 代码清晰性:避免在通用实现中增加过多的条件判断
应用价值
广义JSD散度的实现为机器学习模型训练提供了更灵活的分布匹配工具:
- 在生成模型中,可以通过调整β值在模式覆盖和模式质量之间取得平衡
- 在知识蒸馏场景下,可以更精细地控制教师模型和学生模型之间的知识转移方式
- 为研究不同散度度量对模型性能的影响提供了实验基础
总结
Liger-Kernel项目对广义JSD散度的实现不仅丰富了项目的功能集,也为机器学习社区提供了一个高效、稳定的分布差异度量工具。通过参数β的引入,研究人员和开发者可以在正向KL和反向KL之间进行连续调节,为各种应用场景提供了更大的灵活性。这种实现方式兼顾了数学正确性、计算效率和代码可维护性,体现了项目团队对算法实现质量的追求。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
475
3.54 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
225
94
暂无简介
Dart
725
175
React Native鸿蒙化仓库
JavaScript
287
339
Ascend Extension for PyTorch
Python
284
316
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
701
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19