dstack项目中MPI并行计算任务配置的优化方案
背景介绍
在分布式计算领域,MPI(Message Passing Interface)是一种广泛使用的并行编程标准。dstack作为一个开源的机器学习基础设施项目,近期对其MPI任务配置进行了优化,旨在简化用户在使用mpirun等工具时的配置复杂度。
原有问题分析
在优化前,用户在使用dstack运行MPI任务时需要编写大量自定义逻辑,包括但不限于:
- 节点启动顺序控制
- 主从节点同步机制
- 任务终止条件判断
- 节点间通信配置
这些复杂的配置不仅增加了用户的学习成本,也容易引入错误,降低了开发效率。
优化方案设计
dstack团队经过讨论,决定采用通用化而非特定化的解决方案,主要引入了两个关键配置项:
1. 节点启动顺序控制(startup_order)
该配置项支持两种模式:
workers-first:工作节点优先启动master-first:主节点优先启动
对于MPI任务,通常需要选择workers-first模式,确保所有工作节点就绪后再启动主节点。
2. 任务停止条件(stop_criteria)
该配置项同样支持两种模式:
all-done:所有节点任务完成后停止master-done:主节点完成后即停止
MPI任务通常选择master-done模式,主节点完成任务后即可终止整个运行。
优化后的配置示例
优化后,一个典型的NCCL测试任务配置简化为:
type: task
name: nccl-tests
nodes: 2
startup_order: workers-first
stop_criteria: master-done
image: dstackai/efa
env:
- NCCL_DEBUG=INFO
commands:
- |
if [ ${DSTACK_NODE_RANK} -eq 0 ]; then
cd /root/nccl-tests/build
: > hostfile
for ip in ${DSTACK_NODES_IPS}; do
echo "${ip} slots=${DSTACK_GPUS_PER_NODE}" >> hostfile
done
MPIRUN='mpirun --allow-run-as-root --hostfile hostfile'
${MPIRUN} \
-n ${DSTACK_GPUS_NUM} -N ${DSTACK_GPUS_PER_NODE} \
--mca btl_tcp_if_exclude lo,docker0 \
--bind-to none \
./all_reduce_perf -b 8 -e 8G -f 2 -g 1
else
sleep infinity
fi
技术实现细节
-
节点启动顺序保证:系统会严格按照配置的启动顺序初始化节点,确保依赖关系。
-
自动主机文件生成:系统自动生成包含所有节点信息的主机文件,并通过环境变量
DSTACK_NODES_IPS和DSTACK_HOSTFILE提供给用户。 -
资源信息注入:系统自动注入节点GPU信息(
DSTACK_GPUS_PER_NODE和DSTACK_GPUS_NUM),简化资源配置。 -
优雅终止机制:根据配置的停止条件,系统会智能判断何时终止整个任务运行。
最佳实践建议
-
对于MPI类任务,推荐组合使用
workers-first和master-done。 -
工作节点应保持运行状态直到主节点完成任务,可通过
sleep infinity实现。 -
充分利用系统提供的环境变量简化配置,如节点IP列表和GPU信息。
-
主节点负责协调任务,工作节点只需保持运行状态即可。
未来展望
虽然当前方案已经大大简化了MPI任务的配置,但团队仍在考虑进一步优化:
- 内置MPI任务模板,进一步减少样板代码
- 更智能的故障恢复机制
- 更细粒度的节点控制选项
这种通用化的设计思路不仅适用于MPI任务,也为未来支持其他类型的分布式计算框架提供了良好的扩展基础。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00