Coarse LoFTR TRT:嵌入式设备上的高效局部特征匹配
2024-09-22 13:37:50作者:丁柯新Fawn
项目介绍
Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型。该项目基于 "LoFTR: Detector-Free Local Feature Matching with Transformers" 的粗粒度部分,通过减少 ResNet 和粗粒度 Transformer 层的数量,显著降低了内存消耗并提升了性能。在 Nvidia Jetson Nano 2GB 等嵌入式设备上,该模型能够以 5 FPS 的速度运行,同时保持合理的准确性。
项目技术分析
核心技术
- 知识蒸馏(Knowledge Distillation):通过知识蒸馏技术,模型在保持高准确性的同时,大幅减少了计算复杂度。
- TensorRT 优化:项目针对 TensorRT 技术进行了优化,移除了对
einsum和einops的依赖,进一步提升了模型的运行效率。 - 自动混合精度(Automatic Mixed Precision, AMP):在训练过程中使用 AMP 技术,减少了内存消耗并缩短了训练时间。
数据集
模型在 BlendedMVS 数据集上进行了训练,确保了在不同场景下的泛化能力。
项目及技术应用场景
Coarse LoFTR TRT 适用于需要在嵌入式设备上进行实时局部特征匹配的应用场景,例如:
- 机器人导航:在资源受限的嵌入式设备上实现高效的视觉定位和导航。
- 增强现实(AR):在移动设备上实现实时的场景理解和物体识别。
- 无人机视觉:在无人机上进行实时的环境感知和路径规划。
项目特点
- 高效性能:在嵌入式设备上以 5 FPS 的速度运行,满足实时应用需求。
- 低内存消耗:通过减少模型层数和使用知识蒸馏技术,显著降低了内存占用。
- 易于部署:支持 PyTorch、ONNX 和 TensorRT 等多种模型格式,方便在不同平台上部署。
- 开源友好:项目代码开源,用户可以根据需要进行定制和优化。
如何使用
演示应用
项目提供了一个基于摄像头的演示应用,用户可以通过以下命令启动:
python3 webcam.py --trt=weights/LoFTR_teacher.trt --camid=0
在演示应用中,用户可以通过按键选择感兴趣的视图,并进行特征匹配。应用还实时显示 FPS 计数器,方便用户评估模型性能。
训练模型
用户可以使用 train.py 脚本在 BlendedMVS 数据集上重新训练模型。训练过程中,用户可以通过 train/settings.py 脚本配置训练参数。
总结
Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型,通过知识蒸馏和 TensorRT 优化,实现了在资源受限设备上的高性能表现。无论是机器人导航、增强现实还是无人机视觉,Coarse LoFTR TRT 都能为开发者提供强大的技术支持。快来尝试并集成到你的项目中吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1