Coarse LoFTR TRT:嵌入式设备上的高效局部特征匹配
2024-09-22 04:26:16作者:丁柯新Fawn
项目介绍
Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型。该项目基于 "LoFTR: Detector-Free Local Feature Matching with Transformers" 的粗粒度部分,通过减少 ResNet 和粗粒度 Transformer 层的数量,显著降低了内存消耗并提升了性能。在 Nvidia Jetson Nano 2GB 等嵌入式设备上,该模型能够以 5 FPS 的速度运行,同时保持合理的准确性。
项目技术分析
核心技术
- 知识蒸馏(Knowledge Distillation):通过知识蒸馏技术,模型在保持高准确性的同时,大幅减少了计算复杂度。
- TensorRT 优化:项目针对 TensorRT 技术进行了优化,移除了对
einsum和einops的依赖,进一步提升了模型的运行效率。 - 自动混合精度(Automatic Mixed Precision, AMP):在训练过程中使用 AMP 技术,减少了内存消耗并缩短了训练时间。
数据集
模型在 BlendedMVS 数据集上进行了训练,确保了在不同场景下的泛化能力。
项目及技术应用场景
Coarse LoFTR TRT 适用于需要在嵌入式设备上进行实时局部特征匹配的应用场景,例如:
- 机器人导航:在资源受限的嵌入式设备上实现高效的视觉定位和导航。
- 增强现实(AR):在移动设备上实现实时的场景理解和物体识别。
- 无人机视觉:在无人机上进行实时的环境感知和路径规划。
项目特点
- 高效性能:在嵌入式设备上以 5 FPS 的速度运行,满足实时应用需求。
- 低内存消耗:通过减少模型层数和使用知识蒸馏技术,显著降低了内存占用。
- 易于部署:支持 PyTorch、ONNX 和 TensorRT 等多种模型格式,方便在不同平台上部署。
- 开源友好:项目代码开源,用户可以根据需要进行定制和优化。
如何使用
演示应用
项目提供了一个基于摄像头的演示应用,用户可以通过以下命令启动:
python3 webcam.py --trt=weights/LoFTR_teacher.trt --camid=0
在演示应用中,用户可以通过按键选择感兴趣的视图,并进行特征匹配。应用还实时显示 FPS 计数器,方便用户评估模型性能。
训练模型
用户可以使用 train.py 脚本在 BlendedMVS 数据集上重新训练模型。训练过程中,用户可以通过 train/settings.py 脚本配置训练参数。
总结
Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型,通过知识蒸馏和 TensorRT 优化,实现了在资源受限设备上的高性能表现。无论是机器人导航、增强现实还是无人机视觉,Coarse LoFTR TRT 都能为开发者提供强大的技术支持。快来尝试并集成到你的项目中吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134