首页
/ Coarse LoFTR TRT:嵌入式设备上的高效局部特征匹配

Coarse LoFTR TRT:嵌入式设备上的高效局部特征匹配

2024-09-22 02:05:18作者:丁柯新Fawn

项目介绍

Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型。该项目基于 "LoFTR: Detector-Free Local Feature Matching with Transformers" 的粗粒度部分,通过减少 ResNet 和粗粒度 Transformer 层的数量,显著降低了内存消耗并提升了性能。在 Nvidia Jetson Nano 2GB 等嵌入式设备上,该模型能够以 5 FPS 的速度运行,同时保持合理的准确性。

项目技术分析

核心技术

  1. 知识蒸馏(Knowledge Distillation):通过知识蒸馏技术,模型在保持高准确性的同时,大幅减少了计算复杂度。
  2. TensorRT 优化:项目针对 TensorRT 技术进行了优化,移除了对 einsumeinops 的依赖,进一步提升了模型的运行效率。
  3. 自动混合精度(Automatic Mixed Precision, AMP):在训练过程中使用 AMP 技术,减少了内存消耗并缩短了训练时间。

数据集

模型在 BlendedMVS 数据集上进行了训练,确保了在不同场景下的泛化能力。

项目及技术应用场景

Coarse LoFTR TRT 适用于需要在嵌入式设备上进行实时局部特征匹配的应用场景,例如:

  • 机器人导航:在资源受限的嵌入式设备上实现高效的视觉定位和导航。
  • 增强现实(AR):在移动设备上实现实时的场景理解和物体识别。
  • 无人机视觉:在无人机上进行实时的环境感知和路径规划。

项目特点

  1. 高效性能:在嵌入式设备上以 5 FPS 的速度运行,满足实时应用需求。
  2. 低内存消耗:通过减少模型层数和使用知识蒸馏技术,显著降低了内存占用。
  3. 易于部署:支持 PyTorch、ONNX 和 TensorRT 等多种模型格式,方便在不同平台上部署。
  4. 开源友好:项目代码开源,用户可以根据需要进行定制和优化。

如何使用

演示应用

项目提供了一个基于摄像头的演示应用,用户可以通过以下命令启动:

python3 webcam.py --trt=weights/LoFTR_teacher.trt --camid=0

在演示应用中,用户可以通过按键选择感兴趣的视图,并进行特征匹配。应用还实时显示 FPS 计数器,方便用户评估模型性能。

训练模型

用户可以使用 train.py 脚本在 BlendedMVS 数据集上重新训练模型。训练过程中,用户可以通过 train/settings.py 脚本配置训练参数。

总结

Coarse LoFTR TRT 是一个专为嵌入式设备设计的高效局部特征匹配模型,通过知识蒸馏和 TensorRT 优化,实现了在资源受限设备上的高性能表现。无论是机器人导航、增强现实还是无人机视觉,Coarse LoFTR TRT 都能为开发者提供强大的技术支持。快来尝试并集成到你的项目中吧!

登录后查看全文
热门项目推荐

项目优选

收起
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
47
248
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
346
381
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
871
516
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
179
263
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
131
184
kernelkernel
deepin linux kernel
C
22
5
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
335
1.09 K
harmony-utilsharmony-utils
harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
31
0
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0