GLM-4多卡推理中的显存优化实践
2025-06-03 14:44:26作者:蔡丛锟
问题背景
在大型视觉语言模型GLM-4的实际部署中,许多用户反馈在使用多张NVIDIA 3090-24G显卡进行推理时会遇到显存不足的问题。典型表现为当指定多卡运行时(如CUDA_VISIBLE_DEVICES="4,5,6,7,8"),系统仍会抛出CUDA out of memory错误,提示尝试分配54.00 MiB失败。
问题分析
通过对用户反馈的分析,我们发现该问题主要源于以下几个方面:
- 模型加载策略不当:默认的模型加载方式可能没有充分利用多卡显存资源
- 跨设备数据传输:在视觉特征处理过程中存在未优化的设备间数据传输
- 显存分配不均衡:在多卡环境下,显存分配策略可能导致某些卡过载而其他卡利用率不足
解决方案
1. 使用SWIFT框架优化
推荐采用SWIFT框架进行多模态模型的部署,该框架针对GLM-4V模型提供了专门的最佳实践方案。通过框架级别的优化,可以更好地管理多卡环境下的显存分配。
2. 关键代码修改
在模型实现文件modeling_chatglm.py中,需要特别注意视觉特征处理的设备一致性。具体修改位置在867行附近,将原始的images_features[i]修改为:
images_features[i].to(inputs_embeds.device)
这一修改确保了视觉特征与文本嵌入在同一设备上处理,避免了不必要的跨设备数据传输和显存占用。
3. 设备映射策略调整
在多卡环境中,device_map参数的设置对显存分配至关重要。经过实践验证,以下策略较为有效:
- balanced模式:尝试在可用GPU间均衡分配模型参数
- auto模式:让系统自动决定最佳分配方案
- 自定义映射:对于特定硬件配置,可以手动指定各层的设备位置
值得注意的是,不同版本的模型文件可能表现不同。例如,某些更新后的版本在chat任务上能够正常实现双卡加载,但在视觉任务上仍存在问题。
实践建议
- 版本一致性:确保使用的模型文件、框架和修改补丁来自同一版本周期
- 显存监控:在推理过程中实时监控各卡的显存使用情况
- 分批处理:对于特别大的输入,考虑分批处理以降低峰值显存需求
- 量化选项:如果显存仍然紧张,可以考虑使用模型量化技术进一步降低需求
总结
GLM-4模型在多卡环境下的显存优化是一个系统工程,需要从框架选择、代码修改、加载策略等多个方面综合考虑。通过上述方法,用户可以在多张3090显卡上成功部署GLM-4V模型,实现高效的多模态推理。随着项目的持续更新,建议开发者关注官方的最新优化方案,以获得更好的性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217