GLM-4多卡推理中的显存优化实践
2025-06-03 03:51:37作者:蔡丛锟
问题背景
在大型视觉语言模型GLM-4的实际部署中,许多用户反馈在使用多张NVIDIA 3090-24G显卡进行推理时会遇到显存不足的问题。典型表现为当指定多卡运行时(如CUDA_VISIBLE_DEVICES="4,5,6,7,8"),系统仍会抛出CUDA out of memory错误,提示尝试分配54.00 MiB失败。
问题分析
通过对用户反馈的分析,我们发现该问题主要源于以下几个方面:
- 模型加载策略不当:默认的模型加载方式可能没有充分利用多卡显存资源
- 跨设备数据传输:在视觉特征处理过程中存在未优化的设备间数据传输
- 显存分配不均衡:在多卡环境下,显存分配策略可能导致某些卡过载而其他卡利用率不足
解决方案
1. 使用SWIFT框架优化
推荐采用SWIFT框架进行多模态模型的部署,该框架针对GLM-4V模型提供了专门的最佳实践方案。通过框架级别的优化,可以更好地管理多卡环境下的显存分配。
2. 关键代码修改
在模型实现文件modeling_chatglm.py中,需要特别注意视觉特征处理的设备一致性。具体修改位置在867行附近,将原始的images_features[i]修改为:
images_features[i].to(inputs_embeds.device)
这一修改确保了视觉特征与文本嵌入在同一设备上处理,避免了不必要的跨设备数据传输和显存占用。
3. 设备映射策略调整
在多卡环境中,device_map参数的设置对显存分配至关重要。经过实践验证,以下策略较为有效:
- balanced模式:尝试在可用GPU间均衡分配模型参数
- auto模式:让系统自动决定最佳分配方案
- 自定义映射:对于特定硬件配置,可以手动指定各层的设备位置
值得注意的是,不同版本的模型文件可能表现不同。例如,某些更新后的版本在chat任务上能够正常实现双卡加载,但在视觉任务上仍存在问题。
实践建议
- 版本一致性:确保使用的模型文件、框架和修改补丁来自同一版本周期
- 显存监控:在推理过程中实时监控各卡的显存使用情况
- 分批处理:对于特别大的输入,考虑分批处理以降低峰值显存需求
- 量化选项:如果显存仍然紧张,可以考虑使用模型量化技术进一步降低需求
总结
GLM-4模型在多卡环境下的显存优化是一个系统工程,需要从框架选择、代码修改、加载策略等多个方面综合考虑。通过上述方法,用户可以在多张3090显卡上成功部署GLM-4V模型,实现高效的多模态推理。随着项目的持续更新,建议开发者关注官方的最新优化方案,以获得更好的性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8