GLM-4项目中的GLM-4V-9B模型量化实践指南
2025-06-03 22:45:02作者:宣利权Counsellor
在计算机视觉与自然语言处理交叉领域,GLM-4项目推出的GLM-4V-9B模型展现了卓越的性能表现。相比同类模型如CogVLM2,GLM-4V-9B在推理速度上实现了显著提升,在A800显卡上单图识别时间从10秒缩短至2-3秒,同时保持了优秀的识别精度。
模型量化的重要性
模型量化是深度学习模型部署中的关键技术,通过降低模型参数的数值精度来减少内存占用和计算开销。对于GLM-4V-9B这样的多模态大模型,量化尤为重要:
- 显存优化:原始FP16/FP32模型显存占用过高
- 推理加速:低精度计算通常能获得更快的执行速度
- 部署友好:使大模型能在消费级硬件上运行
GLM-4V-9B的量化方案
目前官方尚未直接提供量化版本的GLM-4V-9B模型,需要开发者自行实施量化。项目提供了两种主要的量化方法:
1. 动态加载时量化
使用transformers库的AutoPeftModelForCausalLM加载模型时,通过设置load_in_4bit=True参数实现即时量化:
model = AutoPeftModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True,
device_map='auto',
load_in_4bit=True
)
2. 官方推荐量化方案
项目demo中提供了更完整的量化实现方案,建议开发者参考官方示例代码。这种方法通常能获得更好的量化效果和性能平衡。
量化实践中的注意事项
- 显存监控:量化后仍需监控显存占用,确保符合预期
- 精度验证:量化可能影响模型精度,需进行充分测试
- 硬件兼容性:不同显卡对量化支持度不同,需针对性优化
- 量化策略:根据需求选择4bit/8bit等不同量化级别
性能优化建议
对于希望进一步提升GLM-4V-9B推理速度的开发者,可以考虑:
- 结合TensorRT等推理加速框架
- 使用更高效的注意力机制实现
- 针对特定硬件进行算子优化
- 采用模型剪枝等压缩技术配合量化
GLM-4项目团队将持续优化模型性能,建议开发者关注项目更新以获取最新的量化方案和性能优化技术。通过合理的量化部署,GLM-4V-9B模型能够在保持高性能的同时,显著降低资源需求,为多模态应用提供更高效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
340
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178