GLM-4项目中的GLM-4V-9B模型量化实践指南
2025-06-03 22:45:02作者:宣利权Counsellor
在计算机视觉与自然语言处理交叉领域,GLM-4项目推出的GLM-4V-9B模型展现了卓越的性能表现。相比同类模型如CogVLM2,GLM-4V-9B在推理速度上实现了显著提升,在A800显卡上单图识别时间从10秒缩短至2-3秒,同时保持了优秀的识别精度。
模型量化的重要性
模型量化是深度学习模型部署中的关键技术,通过降低模型参数的数值精度来减少内存占用和计算开销。对于GLM-4V-9B这样的多模态大模型,量化尤为重要:
- 显存优化:原始FP16/FP32模型显存占用过高
- 推理加速:低精度计算通常能获得更快的执行速度
- 部署友好:使大模型能在消费级硬件上运行
GLM-4V-9B的量化方案
目前官方尚未直接提供量化版本的GLM-4V-9B模型,需要开发者自行实施量化。项目提供了两种主要的量化方法:
1. 动态加载时量化
使用transformers库的AutoPeftModelForCausalLM加载模型时,通过设置load_in_4bit=True参数实现即时量化:
model = AutoPeftModelForCausalLM.from_pretrained(
model_dir,
trust_remote_code=True,
device_map='auto',
load_in_4bit=True
)
2. 官方推荐量化方案
项目demo中提供了更完整的量化实现方案,建议开发者参考官方示例代码。这种方法通常能获得更好的量化效果和性能平衡。
量化实践中的注意事项
- 显存监控:量化后仍需监控显存占用,确保符合预期
- 精度验证:量化可能影响模型精度,需进行充分测试
- 硬件兼容性:不同显卡对量化支持度不同,需针对性优化
- 量化策略:根据需求选择4bit/8bit等不同量化级别
性能优化建议
对于希望进一步提升GLM-4V-9B推理速度的开发者,可以考虑:
- 结合TensorRT等推理加速框架
- 使用更高效的注意力机制实现
- 针对特定硬件进行算子优化
- 采用模型剪枝等压缩技术配合量化
GLM-4项目团队将持续优化模型性能,建议开发者关注项目更新以获取最新的量化方案和性能优化技术。通过合理的量化部署,GLM-4V-9B模型能够在保持高性能的同时,显著降低资源需求,为多模态应用提供更高效的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0133
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
497
3.65 K
Ascend Extension for PyTorch
Python
301
343
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
308
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
869
480
暂无简介
Dart
745
180
React Native鸿蒙化仓库
JavaScript
297
347
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
151
882