首页
/ Machine-Learning-Yearning-Chinese-ver 项目教程

Machine-Learning-Yearning-Chinese-ver 项目教程

2024-09-25 10:23:01作者:庞队千Virginia

1. 项目介绍

Machine-Learning-Yearning-Chinese-ver 是 Andrew NG 的关于机器学习策略的工具书的中文翻译稿源文件。该项目旨在帮助机器学习从业者更好地理解和应用机器学习策略,特别是在如何使机器学习算法发挥作用方面。原书由 Andrew NG 编写,重点不是教授 ML 算法,而是如何使这些算法在实际应用中有效工作。

2. 项目快速启动

2.1 克隆项目

首先,你需要克隆项目到本地:

git clone https://github.com/AlbertHG/Machine-Learning-Yearning-Chinese-ver.git

2.2 查看文档

进入项目目录后,你可以查看翻译后的文档:

cd Machine-Learning-Yearning-Chinese-ver

文档主要存放在 mlyearning-Chinese ver 目录下,你可以使用任何文本编辑器或 Markdown 阅读器打开这些文件。

2.3 阅读英文原稿

如果你需要查看英文原稿,可以在 mlyearning-Draft 目录下找到相应的 PDF 文件。

3. 应用案例和最佳实践

3.1 案例一:配置开发集和训练集

在机器学习项目中,配置开发集和训练集是非常关键的一步。书中详细介绍了如何设置开发集和测试集,以适应现代化的机器学习项目。例如,书中提到:

  • 开发集和测试集应当服从同一分布。
  • 开发集/测试集多大合适。

3.2 案例二:误差分析

误差分析是优化机器学习模型的重要步骤。书中提供了手动分析误差的流程,帮助项目优化选择合适的方向。例如:

  • 快速搭建第一个系统并开始迭代。
  • 误差分析:查看开发集样本来评估想法。

3.3 最佳实践

书中还提供了许多最佳实践,如:

  • 如何利用偏差和方差来优化现代机器学习项目。
  • 如何通过和人类表现水平的比较来加快机器学习发展。

4. 典型生态项目

4.1 TensorFlow

TensorFlow 是一个开源的机器学习框架,广泛应用于各种机器学习项目中。你可以使用 TensorFlow 来实现书中的各种策略和算法。

4.2 PyTorch

PyTorch 是另一个流行的深度学习框架,特别适合研究和快速原型开发。你可以使用 PyTorch 来实现书中的端到端深度学习策略。

4.3 Scikit-learn

Scikit-learn 是一个用于机器学习的 Python 库,提供了许多常用的机器学习算法和工具。你可以使用 Scikit-learn 来实现书中的基本误差分析和模型评估。

通过结合这些生态项目,你可以更好地应用 Machine-Learning-Yearning-Chinese-ver 中的策略和方法,提升机器学习项目的效率和效果。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5