Machine-Learning-Yearning-Chinese-ver 项目教程
1. 项目介绍
Machine-Learning-Yearning-Chinese-ver 是 Andrew NG 的关于机器学习策略的工具书的中文翻译稿源文件。该项目旨在帮助机器学习从业者更好地理解和应用机器学习策略,特别是在如何使机器学习算法发挥作用方面。原书由 Andrew NG 编写,重点不是教授 ML 算法,而是如何使这些算法在实际应用中有效工作。
2. 项目快速启动
2.1 克隆项目
首先,你需要克隆项目到本地:
git clone https://github.com/AlbertHG/Machine-Learning-Yearning-Chinese-ver.git
2.2 查看文档
进入项目目录后,你可以查看翻译后的文档:
cd Machine-Learning-Yearning-Chinese-ver
文档主要存放在 mlyearning-Chinese ver 目录下,你可以使用任何文本编辑器或 Markdown 阅读器打开这些文件。
2.3 阅读英文原稿
如果你需要查看英文原稿,可以在 mlyearning-Draft 目录下找到相应的 PDF 文件。
3. 应用案例和最佳实践
3.1 案例一:配置开发集和训练集
在机器学习项目中,配置开发集和训练集是非常关键的一步。书中详细介绍了如何设置开发集和测试集,以适应现代化的机器学习项目。例如,书中提到:
- 开发集和测试集应当服从同一分布。
- 开发集/测试集多大合适。
3.2 案例二:误差分析
误差分析是优化机器学习模型的重要步骤。书中提供了手动分析误差的流程,帮助项目优化选择合适的方向。例如:
- 快速搭建第一个系统并开始迭代。
- 误差分析:查看开发集样本来评估想法。
3.3 最佳实践
书中还提供了许多最佳实践,如:
- 如何利用偏差和方差来优化现代机器学习项目。
- 如何通过和人类表现水平的比较来加快机器学习发展。
4. 典型生态项目
4.1 TensorFlow
TensorFlow 是一个开源的机器学习框架,广泛应用于各种机器学习项目中。你可以使用 TensorFlow 来实现书中的各种策略和算法。
4.2 PyTorch
PyTorch 是另一个流行的深度学习框架,特别适合研究和快速原型开发。你可以使用 PyTorch 来实现书中的端到端深度学习策略。
4.3 Scikit-learn
Scikit-learn 是一个用于机器学习的 Python 库,提供了许多常用的机器学习算法和工具。你可以使用 Scikit-learn 来实现书中的基本误差分析和模型评估。
通过结合这些生态项目,你可以更好地应用 Machine-Learning-Yearning-Chinese-ver 中的策略和方法,提升机器学习项目的效率和效果。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00