Microsoft Olive项目中QNN量化配置的优化实践
摘要
本文深入探讨了Microsoft Olive项目中ONNX模型量化过程中的一个重要优化点——prepare_qnn_config函数对op_types_to_quantize参数的处理逻辑。通过分析实际案例,我们揭示了当前实现可能存在的问题,并提出了改进方案,同时分享了在稳定扩散模型量化过程中的实践经验。
背景
在模型量化过程中,QNN(高通神经网络)执行提供者需要特定的量化配置。Microsoft Olive项目中的prepare_qnn_config函数负责准备这些配置参数。当前实现中,该函数会无条件覆盖用户显式设置的op_types_to_quantize参数,这可能不符合某些特殊场景下的量化需求。
问题分析
在实际应用中,特别是处理如稳定扩散2.1的UNet模型时,我们发现不对常量操作(Constant ops)进行量化反而能获得更好的效果。然而,当前的prepare_qnn_config实现会强制覆盖用户指定的操作类型量化列表,导致无法灵活控制特定操作的量化行为。
从技术角度看,QNN执行提供者虽然通常需要全模型量化以保持单一QNN图的完整性,但根据高通官方文档,某些操作可以在FP16精度下运行而无需量化,只要这些操作在QNN支持列表中。
解决方案
我们提出了以下改进方案:
- 在prepare_qnn_config函数中保留用户显式设置的op_types_to_quantize参数
- 仅当用户未指定该参数时,才使用默认的量化操作类型列表
- 通过预处理步骤优化模型结构,如将常量操作转换为初始值
核心代码修改如下:
op_types_to_quantize = run_config["op_types_to_quantize"]
run_config = {k: v for k, v in inspect.getmembers(qnn_config) if not k.startswith("_")}
if op_types_to_quantize:
run_config["op_types_to_quantize"] = op_types_to_quantize
实践案例
在稳定扩散2.1模型的量化过程中,我们发现:
- 不对常量操作进行量化可以显著改善模型性能
- 启用quant_preprocess参数(尽管文档说明默认为True,但实际需要显式设置)可以自动优化模型结构
- 预处理后的模型不再包含常量操作节点,从而避免了不必要的量化
对于文本编码器中的Add和Softmax操作,当量化导致精度下降时,可以考虑:
- 使用张量覆盖(tensor overrides)技术精细控制量化参数
- 权衡量化带来的性能提升与精度损失
最佳实践
基于我们的实践经验,建议在QNN量化时:
- 始终显式设置quant_preprocess为True,确保模型经过适当优化
- 对于特定模型结构,谨慎选择需要量化的操作类型
- 在量化前后进行充分的精度验证,特别是对于敏感操作如Add和Softmax
- 考虑使用peephole优化器等工具进一步优化模型结构
结论
通过对Microsoft Olive项目量化配置的优化,我们实现了更灵活的模型量化控制,特别是在处理复杂模型如稳定扩散时。这一改进不仅解决了特定场景下的量化问题,也为开发者提供了更多自定义选项,使量化过程能够更好地适应不同模型和硬件的需求。未来,我们将继续探索量化预处理和操作类型选择的最佳实践,以进一步提升模型在边缘设备上的性能和精度。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00