Microsoft Olive项目中QNN量化配置的优化实践
摘要
本文深入探讨了Microsoft Olive项目中ONNX模型量化过程中的一个重要优化点——prepare_qnn_config函数对op_types_to_quantize参数的处理逻辑。通过分析实际案例,我们揭示了当前实现可能存在的问题,并提出了改进方案,同时分享了在稳定扩散模型量化过程中的实践经验。
背景
在模型量化过程中,QNN(高通神经网络)执行提供者需要特定的量化配置。Microsoft Olive项目中的prepare_qnn_config函数负责准备这些配置参数。当前实现中,该函数会无条件覆盖用户显式设置的op_types_to_quantize参数,这可能不符合某些特殊场景下的量化需求。
问题分析
在实际应用中,特别是处理如稳定扩散2.1的UNet模型时,我们发现不对常量操作(Constant ops)进行量化反而能获得更好的效果。然而,当前的prepare_qnn_config实现会强制覆盖用户指定的操作类型量化列表,导致无法灵活控制特定操作的量化行为。
从技术角度看,QNN执行提供者虽然通常需要全模型量化以保持单一QNN图的完整性,但根据高通官方文档,某些操作可以在FP16精度下运行而无需量化,只要这些操作在QNN支持列表中。
解决方案
我们提出了以下改进方案:
- 在prepare_qnn_config函数中保留用户显式设置的op_types_to_quantize参数
- 仅当用户未指定该参数时,才使用默认的量化操作类型列表
- 通过预处理步骤优化模型结构,如将常量操作转换为初始值
核心代码修改如下:
op_types_to_quantize = run_config["op_types_to_quantize"]
run_config = {k: v for k, v in inspect.getmembers(qnn_config) if not k.startswith("_")}
if op_types_to_quantize:
run_config["op_types_to_quantize"] = op_types_to_quantize
实践案例
在稳定扩散2.1模型的量化过程中,我们发现:
- 不对常量操作进行量化可以显著改善模型性能
- 启用quant_preprocess参数(尽管文档说明默认为True,但实际需要显式设置)可以自动优化模型结构
- 预处理后的模型不再包含常量操作节点,从而避免了不必要的量化
对于文本编码器中的Add和Softmax操作,当量化导致精度下降时,可以考虑:
- 使用张量覆盖(tensor overrides)技术精细控制量化参数
- 权衡量化带来的性能提升与精度损失
最佳实践
基于我们的实践经验,建议在QNN量化时:
- 始终显式设置quant_preprocess为True,确保模型经过适当优化
- 对于特定模型结构,谨慎选择需要量化的操作类型
- 在量化前后进行充分的精度验证,特别是对于敏感操作如Add和Softmax
- 考虑使用peephole优化器等工具进一步优化模型结构
结论
通过对Microsoft Olive项目量化配置的优化,我们实现了更灵活的模型量化控制,特别是在处理复杂模型如稳定扩散时。这一改进不仅解决了特定场景下的量化问题,也为开发者提供了更多自定义选项,使量化过程能够更好地适应不同模型和硬件的需求。未来,我们将继续探索量化预处理和操作类型选择的最佳实践,以进一步提升模型在边缘设备上的性能和精度。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00