首页
/ NER Annotator for SpaCy 使用教程

NER Annotator for SpaCy 使用教程

2024-09-13 21:42:03作者:邵娇湘

1. 项目介绍

NER Annotator for SpaCy 是一个用于为 SpaCy 命名实体识别(NER)模型创建训练数据的工具。该工具允许用户通过简单的用户界面手动标注文本中的实体,并生成可用于训练自定义 NER 模型的 JSON 格式的训练数据。

主要功能:

  • 自定义标签:支持用户定义的实体标签,并提供颜色编码。
  • 多级标注:支持单词级和字符级的标注。
  • 快捷键:提供键盘快捷键,方便快速标注。
  • 导入导出:支持导入现有标注进行审查,并导出标注数据。
  • 主题切换:支持亮色和暗色主题。

2. 项目快速启动

2.1 安装依赖

首先,确保你已经安装了 Node.js 和 Yarn 包管理器。然后,克隆项目仓库并安装依赖:

git clone https://github.com/tecoholic/ner-annotator.git
cd ner-annotator
yarn install

2.2 启动开发服务器

在项目根目录下,启动开发服务器:

yarn serve

启动后,访问 http://localhost:8081/ner-annotator/ 即可开始使用 NER Annotator。

2.3 构建桌面应用

如果你希望构建桌面应用,可以使用以下命令:

yarn tauri:build

构建完成后,你将获得适用于不同操作系统的可执行文件。

3. 应用案例和最佳实践

3.1 应用案例

案例1:医疗领域实体标注

在医疗领域,NER 模型可以用于识别病历中的关键实体,如疾病名称、药物名称、治疗方案等。使用 NER Annotator,医疗研究人员可以手动标注大量病历数据,生成训练数据,用于训练自定义的 NER 模型。

案例2:金融领域实体标注

在金融领域,NER 模型可以用于识别财务报告中的关键实体,如公司名称、财务指标、交易日期等。通过 NER Annotator,金融分析师可以手动标注财务报告,生成训练数据,用于训练自定义的 NER 模型。

3.2 最佳实践

  • 数据预处理:在标注之前,对文本数据进行预处理,如去除噪声、标准化格式等,以提高标注效率。
  • 多人协作:对于大规模标注任务,可以多人协作标注,并定期审查标注结果,确保标注质量。
  • 持续迭代:在模型训练过程中,不断迭代标注数据,优化模型性能。

4. 典型生态项目

4.1 SpaCy

SpaCy 是一个开源的自然语言处理库,广泛用于工业级应用。NER Annotator 生成的训练数据可以直接用于 SpaCy 的 NER 模型训练。

4.2 Hugging Face Transformers

Hugging Face Transformers 是一个强大的 NLP 库,支持多种预训练模型。通过 NER Annotator 生成的训练数据,可以用于微调 Hugging Face 的 NER 模型。

4.3 AllenNLP

AllenNLP 是一个基于 PyTorch 的 NLP 研究库,支持多种 NLP 任务。NER Annotator 生成的训练数据可以用于 AllenNLP 的 NER 模型训练。

通过以上模块的介绍和实践,你可以快速上手并充分利用 NER Annotator for SpaCy 进行自定义 NER 模型的训练。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5