NER Annotator for SpaCy 使用教程
1. 项目介绍
NER Annotator for SpaCy 是一个用于为 SpaCy 命名实体识别(NER)模型创建训练数据的工具。该工具允许用户通过简单的用户界面手动标注文本中的实体,并生成可用于训练自定义 NER 模型的 JSON 格式的训练数据。
主要功能:
- 自定义标签:支持用户定义的实体标签,并提供颜色编码。
- 多级标注:支持单词级和字符级的标注。
- 快捷键:提供键盘快捷键,方便快速标注。
- 导入导出:支持导入现有标注进行审查,并导出标注数据。
- 主题切换:支持亮色和暗色主题。
2. 项目快速启动
2.1 安装依赖
首先,确保你已经安装了 Node.js 和 Yarn 包管理器。然后,克隆项目仓库并安装依赖:
git clone https://github.com/tecoholic/ner-annotator.git
cd ner-annotator
yarn install
2.2 启动开发服务器
在项目根目录下,启动开发服务器:
yarn serve
启动后,访问 http://localhost:8081/ner-annotator/ 即可开始使用 NER Annotator。
2.3 构建桌面应用
如果你希望构建桌面应用,可以使用以下命令:
yarn tauri:build
构建完成后,你将获得适用于不同操作系统的可执行文件。
3. 应用案例和最佳实践
3.1 应用案例
案例1:医疗领域实体标注
在医疗领域,NER 模型可以用于识别病历中的关键实体,如疾病名称、药物名称、治疗方案等。使用 NER Annotator,医疗研究人员可以手动标注大量病历数据,生成训练数据,用于训练自定义的 NER 模型。
案例2:金融领域实体标注
在金融领域,NER 模型可以用于识别财务报告中的关键实体,如公司名称、财务指标、交易日期等。通过 NER Annotator,金融分析师可以手动标注财务报告,生成训练数据,用于训练自定义的 NER 模型。
3.2 最佳实践
- 数据预处理:在标注之前,对文本数据进行预处理,如去除噪声、标准化格式等,以提高标注效率。
- 多人协作:对于大规模标注任务,可以多人协作标注,并定期审查标注结果,确保标注质量。
- 持续迭代:在模型训练过程中,不断迭代标注数据,优化模型性能。
4. 典型生态项目
4.1 SpaCy
SpaCy 是一个开源的自然语言处理库,广泛用于工业级应用。NER Annotator 生成的训练数据可以直接用于 SpaCy 的 NER 模型训练。
4.2 Hugging Face Transformers
Hugging Face Transformers 是一个强大的 NLP 库,支持多种预训练模型。通过 NER Annotator 生成的训练数据,可以用于微调 Hugging Face 的 NER 模型。
4.3 AllenNLP
AllenNLP 是一个基于 PyTorch 的 NLP 研究库,支持多种 NLP 任务。NER Annotator 生成的训练数据可以用于 AllenNLP 的 NER 模型训练。
通过以上模块的介绍和实践,你可以快速上手并充分利用 NER Annotator for SpaCy 进行自定义 NER 模型的训练。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00