Unity-Editor-Toolbox中PropertyDrawer的NullReferenceException问题解析
在Unity编辑器扩展开发中,PropertyDrawer是一个非常实用的功能,它允许开发者自定义属性在Inspector面板中的显示方式。然而,在使用Unity-Editor-Toolbox项目时,开发者可能会遇到一个特定的NullReferenceException问题,特别是在处理自定义PropertyDrawer时。
问题现象
当开发者使用自定义PropertyDrawer绘制包含列表的属性时,可能会遇到NullReferenceException异常,错误信息指向UnityEditor.EditorGUI+RecycledTextEditor.IsEditingControl方法。这个问题通常表现为:
- 自定义PropertyDrawer无法正常工作
- 控制台显示NullReferenceException错误
- 只有在禁用Unity-Editor-Toolbox的"Use Toolbox Drawers"选项时,PropertyDrawer才能正常工作
问题根源分析
通过分析错误堆栈和代码示例,我们可以确定问题的核心在于PropertyDrawer中的属性修改处理方式。具体来说:
- 错误发生在处理数组大小属性时,表明问题与列表/数组类型的序列化属性有关
- 在自定义PropertyDrawer中直接调用property.serializedObject.ApplyModifiedProperties()可能导致内部状态不一致
- Unity的编辑器GUI系统期望在完整的Inspector绘制周期后才应用属性修改
解决方案
针对这个问题,我们有以下几种解决方案:
1. 移除不必要的ApplyModifiedProperties调用
在PropertyDrawer的OnGUI方法中,不应该直接调用ApplyModifiedProperties()。Unity编辑器会在整个Inspector绘制完成后自动处理属性应用的逻辑。
// 错误做法 - 不应在PropertyDrawer中直接调用
if (EditorGUI.EndChangeCheck())
{
property.serializedObject.ApplyModifiedProperties();
}
2. 正确使用BeginChangeCheck/EndChangeCheck
如果确实需要在特定控件后检查修改,应该成对使用BeginChangeCheck和EndChangeCheck:
EditorGUI.BeginChangeCheck();
// 绘制控件代码...
if (EditorGUI.EndChangeCheck())
{
// 可以在这里标记需要修改,但不直接调用ApplyModifiedProperties
}
3. 优化PropertyDrawer性能
除了解决异常问题外,还可以对PropertyDrawer进行性能优化:
- 缓存频繁使用的数据(如绑定选项)
- 避免在每次OnGUI调用时重新计算不变的数据
- 使用静态变量存储不随实例变化的数据
最佳实践建议
在开发自定义PropertyDrawer时,建议遵循以下最佳实践:
- 避免直接修改序列化对象:让Unity处理属性应用的时机
- 合理使用ChangeCheck:只在需要精确控制修改检测时使用
- 性能优化:缓存计算结果,减少每帧的计算量
- 兼容性考虑:确保PropertyDrawer在不同环境下都能正常工作
- 错误处理:对可能为null的引用进行适当检查
总结
在Unity编辑器扩展开发中,理解PropertyDrawer的工作原理和Unity的序列化机制非常重要。通过避免直接调用ApplyModifiedProperties和正确使用ChangeCheck机制,可以解决大多数与NullReferenceException相关的问题。同时,合理的性能优化可以提升编辑器的响应速度,为开发者提供更好的使用体验。
记住,编辑器脚本虽然强大,但也需要遵循Unity的特定规则和生命周期才能稳定工作。在遇到类似问题时,仔细分析错误堆栈并理解Unity的内部工作机制是解决问题的关键。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00