Volcano调度器如何基于不同资源设置差异化调度策略
概述
在Kubernetes集群资源调度场景中,不同类型的资源往往需要采用不同的调度策略。Volcano作为一款高性能的工作负载调度器,提供了灵活的插件机制来实现资源感知的差异化调度。本文将详细介绍如何配置Volcano调度器,使其能够针对GPU和CPU等不同资源类型应用不同的调度算法。
资源调度策略需求分析
在实际生产环境中,我们通常需要对不同类型的计算资源采用不同的调度策略:
-
GPU资源:由于其稀缺性和高价值特性,通常希望采用"装箱"(binpack)策略,尽可能将任务集中调度到少数节点,以提高资源利用率并减少碎片化。
-
CPU资源:相对而言更为普遍,往往希望采用"分散"(spread)策略,将任务均匀分布到不同节点,以提高系统整体吞吐量和容错能力。
Volcano调度器配置方案
Volcano通过binpack
插件及其参数配置,可以实现针对不同资源的差异化调度策略。核心配置如下:
actions: "enqueue, allocate, backfill"
tiers:
- plugins:
- name: binpack
arguments:
binpack.weight: 10
binpack.cpu: 0
binpack.memory: 0
binpack.resources: nvidia.com/gpu
binpack.resources.nvidia.com/gpu: 6
- name: priority
- name: gang
enablePreemptable: false
- name: conformance
- plugins:
- name: overcommit
- name: drf
enablePreemptable: false
- name: predicates
- name: proportion
- name: nodeorder
配置解析
-
权重设置:
binpack.weight
:设置插件整体权重为10,确保调度器会考虑此插件的评分结果binpack.cpu
和binpack.memory
:设置为0,表示CPU和内存资源不参与binpack评分计算
-
GPU资源专项配置:
binpack.resources
:指定需要特殊调度的资源类型,此处为nvidia.com/gpu
binpack.resources.nvidia.com/gpu
:设置GPU资源的权重为6,调度器会优先考虑GPU资源的装箱率
实现原理
Volcano调度器的binpack
插件在计算节点得分时,会根据配置的资源权重进行加权计算。当某种资源的权重设为0时,该资源将不会影响最终的调度决策。通过这种方式,我们可以:
-
对GPU资源保持较高的权重值,促使调度器优先选择已分配GPU资源较多的节点,实现资源集中。
-
将CPU资源的权重设为0,使其不影响调度决策,相当于实现了CPU资源的分散调度。
实际应用建议
-
多资源类型支持:可以同时配置多种资源类型,为每种资源设置不同的权重值。
-
权重调优:根据实际集群特性和业务需求,调整不同资源的权重值,找到最佳平衡点。
-
策略组合:可以结合其他插件如
nodeorder
和proportion
,构建更复杂的调度策略。
通过这种灵活的配置方式,Volcano调度器能够很好地满足现代混合工作负载对差异化资源调度的需求,既保证了GPU等稀缺资源的高效利用,又实现了CPU等常规资源的合理分配。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0287Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









