AWS Deep Learning Containers发布PyTorch Graviton推理容器v1.38版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预构建的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,让开发者能够快速部署深度学习应用而无需花费大量时间配置环境。这些容器经过AWS的优化和测试,可直接在Amazon ECS、Amazon EKS和Amazon SageMaker等服务上运行。
本次发布的v1.38版本主要针对基于Graviton处理器的PyTorch推理场景进行了更新。Graviton是AWS自主研发的基于ARM架构的处理器,相比传统x86架构处理器,在性价比方面具有明显优势。该版本容器镜像基于Ubuntu 22.04操作系统构建,预装了PyTorch 2.4.0框架及其相关组件。
核心特性与技术细节
该容器镜像的关键技术规格包括:
-
基础环境配置:
- 操作系统:Ubuntu 22.04
- Python版本:3.11
- 处理器架构:ARM64(专为Graviton优化)
-
主要软件包版本:
- PyTorch核心框架:2.4.0+cpu
- TorchVision:0.19.0+cpu
- TorchAudio:2.4.0+cpu
- 模型服务组件:TorchServe 0.12.0和Torch Model Archiver 0.12.0
- 数据处理库:NumPy 1.26.4、Pandas 2.2.3
- 计算机视觉库:OpenCV 4.10.0.84
- 机器学习工具:scikit-learn 1.5.2、SciPy 1.14.1
-
系统级依赖:
- GCC编译器相关库(libgcc-10-dev、libgcc-11-dev)
- C++标准库(libstdc++-10-dev、libstdc++-11-dev)
- 开发工具(如Emacs编辑器套件)
应用场景与优势
这个专为Graviton处理器优化的PyTorch推理容器特别适合以下场景:
-
云端推理服务部署:在Amazon SageMaker等托管服务上快速部署PyTorch模型推理服务,充分利用Graviton处理器的成本优势。
-
边缘计算场景:由于ARM架构的能效优势,该容器也适合部署在边缘设备上进行模型推理。
-
计算机视觉应用:预装的OpenCV和TorchVision库为图像处理任务提供了完整支持。
-
模型服务化:内置的TorchServe组件支持将训练好的PyTorch模型快速打包和部署为可扩展的Web服务。
版本兼容性与使用建议
该容器镜像提供了多个标签以满足不同使用需求,包括通用版本标签(如2.4-cpu-py311)和包含完整版本信息的特定标签。建议生产环境使用包含具体版本号的标签以确保环境一致性。
对于需要自定义容器的用户,可以从基础镜像出发,通过pip安装额外的Python包或通过apt安装系统级依赖。但需要注意保持与预装软件包的兼容性,特别是PyTorch及其相关组件的版本匹配。
总结
AWS此次发布的PyTorch Graviton推理容器v1.38版本,为基于ARM架构的深度学习推理提供了开箱即用的解决方案。通过预集成优化后的软件栈,开发者可以专注于模型开发和业务逻辑,而无需耗费精力在环境配置和性能调优上。特别是在成本敏感型应用场景中,结合Graviton处理器的性价比优势,这一容器镜像将有助于降低AI应用的总体拥有成本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00