AWS Deep Learning Containers发布PyTorch Graviton EC2推理容器v1.38
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架及其依赖项,使开发者能够快速部署和运行深度学习工作负载。这些容器经过AWS优化,可在云环境中提供高性能的深度学习体验。
近日,AWS DLC项目发布了针对Graviton处理器优化的PyTorch推理容器新版本v1.38。这个版本特别针对基于Arm架构的AWS Graviton处理器进行了优化,适用于EC2实例上的推理场景。
容器镜像详情
本次发布的容器镜像基于Ubuntu 20.04操作系统,预装了PyTorch 2.3.0 CPU版本及其相关组件。镜像标识为:
763104351884.dkr.ecr.us-west-2.amazonaws.com/pytorch-inference-graviton:2.3.0-cpu-py311-ubuntu20.04-ec2-v1.38
镜像采用Python 3.11作为默认Python环境,这是一个较新的Python版本,能够提供更好的性能和语言特性支持。
关键软件包版本
容器中预装了多个重要的Python包和系统依赖:
-
深度学习框架:
- PyTorch 2.3.0 CPU版
- TorchVision 0.18.0
- TorchAudio 2.3.0
- TorchServe 0.11.0(用于模型服务化)
-
科学计算库:
- NumPy 1.26.4
- SciPy 1.14.0
- OpenCV-Python 4.10.0.84
-
开发工具:
- Cython 3.0.10(用于编写C扩展)
- Ninja 1.11.1.1(构建系统)
-
AWS工具:
- AWS CLI 1.33.19
- Boto3 1.34.137(AWS SDK for Python)
-
系统依赖:
- GCC相关库(支持C/C++扩展编译)
- C++标准库(支持PyTorch等框架)
技术特点
-
Graviton处理器优化: 该容器专门为AWS Graviton处理器(基于Arm架构)进行了优化,能够在Graviton实例上提供更好的性能和能效比。
-
轻量级推理环境: 作为推理专用容器,它去除了训练相关的组件,保持了较小的镜像体积,同时包含了TorchServe等模型服务化工具。
-
Python 3.11支持: 使用最新的Python稳定版本之一,提供了更好的性能和语言特性支持,如结构化模式匹配等。
-
完整的工具链: 包含了从开发到部署所需的各种工具,如构建工具、调试工具(如Emacs)等,方便用户进行定制化开发。
适用场景
这个容器镜像特别适合以下场景:
- 在Graviton实例上部署PyTorch模型推理服务
- 构建轻量级的机器学习推理API
- 开发基于PyTorch的Arm架构应用
- 需要高性能、低成本的推理解决方案
总结
AWS Deep Learning Containers的这次更新为使用Graviton处理器的用户提供了最新的PyTorch推理环境。通过预配置的优化环境和工具链,开发者可以快速部署PyTorch模型,而无需花费时间在环境配置上。特别是对于追求成本效益和能效比的用户,基于Graviton的解决方案值得考虑。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00