ChatGLM3微调实践:PTuning_v2与LoRA效果对比及参数解析
微调过程中的参数设置问题
在ChatGLM3项目中进行PTuning_v2微调后,使用inference_hf.py进行推理时会出现一个关于max_new_tokens和max_length参数的警告信息。这个警告表明在文本生成过程中同时设置了max_new_tokens(默认512)和max_length(默认8192)两个参数,系统会优先采用max_new_tokens的设置。
实际上,这个警告对生成结果没有实质性影响,它只是提醒开发者注意参数设置的优先级。在大多数情况下,512个token的生成长度已经足够满足需求,如果确实需要更长的生成结果,可以显式地在推理脚本中调整max_new_tokens参数。
predict_with_generate参数详解
在微调配置文件中,predict_with_generate是一个关键参数,它决定了模型在预测时的行为模式:
-
当设置为true时,模型会使用生成模式进行预测,即像正常对话一样逐步生成文本输出,这种方式可以与微调数据集中的标签(label)进行对比评估。
-
当设置为false时,模型不会生成完整输出,而是直接计算预测结果与标签的差异。
这个参数主要影响评估阶段的行为,对于实际推理应用影响不大。在大多数微调场景下,建议保持默认设置(true),这样可以更直观地观察模型的生成效果。
PTuning_v2与LoRA微调效果对比
实践表明,在相同训练步数的情况下,LoRA微调方法往往比PTuning_v2获得更好的效果。这种现象在实际应用中很常见,主要原因包括:
-
参数更新方式不同:LoRA通过低秩适配器更新模型参数,保留了原始模型的大部分知识;而PTuning_v2主要依靠提示调优。
-
计算资源需求:PTuning_v2通常需要更少的计算资源,但可能牺牲一些性能。
-
任务适应性:对于某些特定任务,LoRA可能更容易捕捉到关键特征。
对于初学者来说,如果计算资源允许,可以优先尝试LoRA微调方法,它通常能更快地获得较好的效果。PTuning_v2则更适合资源受限或对模型改动要求较小的场景。
微调实践建议
-
参数调优:除了predict_with_generate外,还应关注learning_rate、batch_size等关键参数。
-
评估指标:不要只看损失值,还要人工检查生成结果的质量。
-
数据质量:确保微调数据集的质量和多样性,这对最终效果影响很大。
-
逐步尝试:可以先用小规模数据测试不同微调方法的效果,再决定最终方案。
通过理解这些关键参数和微调方法的差异,开发者可以更有效地使用ChatGLM3进行模型定制,获得更好的应用效果。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









