ChatGLM3单机多卡LoRA微调常见问题与解决方案
2025-05-16 14:21:28作者:曹令琨Iris
概述
在使用ChatGLM3进行单机多卡LoRA微调时,开发者可能会遇到一些典型的技术问题。本文将详细分析这些问题并提供解决方案,帮助开发者顺利完成模型微调任务。
常见问题分析
1. DeepSpeed配置缺失问题
当使用官方提供的多卡运行命令时,系统可能会提示缺少DeepSpeed选项。这是因为DeepSpeed配置路径需要设置为绝对路径才能被正确识别。
解决方案:
- 确保在配置文件中将DeepSpeed相关配置改为绝对路径
- 检查DeepSpeed是否已正确安装
2. 运行时参数重复标记错误
在多卡训练过程中,可能会遇到"Expected to mark a variable ready only once"的运行时错误。这种错误通常由以下原因导致:
- 在forward函数外使用了模块参数
- 在多个重入反向传递中重复使用参数
- 同一参数被多次标记为就绪状态
错误示例:
RuntimeError: Expected to mark a variable ready only once...
Parameter at index 55 with name base_model.model.transformer.encoder.layers.27.self_attention.query_key_value.lora_B.default.weight has been marked as ready twice.
解决方案
1. 单卡运行方案
对于只想使用单卡运行的用户,可以使用以下命令格式:
CUDA_VISIBLE_DEVICES=1 python finetune_hf.py data/AdvertiseGen_fix /path/to/chatglm3-6b configs/ptuning_v2.yaml
2. 多卡运行正确配置
要实现单机多卡LoRA微调,推荐使用以下命令格式:
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=8 finetune_hf.py data/AdvertiseGen_fix /path/to/chatglm3-6b configs/sft.yaml configs/ds_zero_3.json
关键参数说明:
--nproc_per_node=8:指定使用的GPU数量OMP_NUM_THREADS=1:设置OpenMP线程数以优化性能- 确保DeepSpeed配置文件(
ds_zero_3.json)使用绝对路径
3. 静态图设置解决方案
对于参数重复标记的问题,可以尝试以下方法:
- 检查模型代码,确保所有参数使用都在forward函数内
- 避免在多个checkpoint函数中重复使用相同参数
- 考虑使用
_set_static_graph()作为临时解决方案(如果模型图在训练循环中不变)
最佳实践建议
-
环境检查:
- 确认CUDA环境配置正确
- 检查DeepSpeed和PyTorch版本兼容性
- 确保所有依赖库已正确安装
-
路径配置:
- 所有配置文件都应使用绝对路径
- 检查数据路径和模型路径的访问权限
-
资源分配:
- 根据GPU显存大小合理设置batch size
- 监控GPU使用情况,避免显存溢出
-
调试技巧:
- 先使用单卡模式验证脚本正确性
- 逐步增加GPU数量进行测试
- 查看日志文件定位具体错误位置
总结
ChatGLM3的LoRA微调在多卡环境下可能会遇到配置和运行时问题,通过正确设置DeepSpeed路径、合理分配计算资源以及遵循参数使用规范,可以有效解决这些问题。建议开发者先进行小规模测试,确认配置无误后再进行大规模训练,以提高开发效率和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19