首页
/ 探索视觉与文本的结合:Composing Text and Image for Image Retrieval

探索视觉与文本的结合:Composing Text and Image for Image Retrieval

2024-05-22 12:38:43作者:虞亚竹Luna

在这个开源项目中,我们深入研究了一种新任务——基于图像和描述性文本的图像检索。项目源自论文《Composing Text and Image for Image Retrieval - An Empirical Odyssey》,并已在CVPR 2019上发表。作者团队包括Nam Vo, Lu Jiang, Chen Sun等知名学者,尽管并非官方支持的Google产品,但其重新实现的代码对于研究社区来说极具价值。

项目简介

项目的核心在于提出了一种新的图像-文本融合方法——TIRG(Text-Image Relationship Generator)。它能够超越传统的图像和文本结合方式,提升在多个数据集上的检索性能。通过给定一个基础图像,并附加上描述所需的修改的文本,该模型可以有效地检索出符合条件的目标图像。

项目概述

技术分析

项目采用PyTorch框架实现,依赖于torchvision、numpy、tqdm和tensorboardX等库。模型结构包括用于提取文本特征的LSTM模型,以及多种图像-文本组合模型,如TIRG和TIRG_lastconv。训练和测试过程由main.py驱动,而数据集则通过datasets.py加载和处理。关键的TIRG函数和软三元组损失函数定义在torch_function.py中。

方法示意图

应用场景

这个项目适用于任何需要将自然语言描述和视觉信息结合起来进行检索的任务,比如:

  1. 智能购物助手:用户输入一个物品图片和属性描述(如“这件衬衫是蓝色的”),模型会找出相似的商品。
  2. 图像搜索引擎优化:用户输入一个不完整的查询,系统可根据文本提示返回匹配度更高的结果。
  3. 自动图像标注或分类:模型可依据提供的文本指导对图像进行准确标注。

项目特点

  1. 创新融合机制:TIRG模型成功地融合了图像和文本信息,提高了检索准确性。
  2. 多数据集验证:已在CSS3D、MITStates和Fashion200k等多个数据集上进行了实验,表现优于传统方法。
  3. 易于复现:代码结构清晰,提供了预训练模型,便于其他研究人员快速上手和比较。
  4. 可扩展性强:项目提供灵活的参数设置,适合进一步探索不同的融合策略和损失函数。

为了体验这款强大的工具,只需按照项目文档下载所需的数据集和预训练模型,然后运行相应的Python脚本即可开始训练和测试。

让我们一起探索如何用文字和图像构建更智能的检索系统,期待您的贡献和反馈,共同推动这项技术的进步!

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
824
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cjmarkdown4cj
一个markdown解析和展示的库
Cangjie
10
0