ORPC v0.23.0 发布:输入输出结构定制化新特性解析
ORPC(OpenAPI RPC Framework)是一个基于 TypeScript 的 API 开发框架,它通过结合 OpenAPI 规范和 RPC 模式,为开发者提供了类型安全和高效的 API 开发体验。最新发布的 v0.23.0 版本引入了一个重要的新特性——输入输出结构定制化功能,这为 API 的数据处理方式带来了更大的灵活性。
输入输出结构定制化功能详解
在 API 开发中,请求和响应的数据结构处理是一个核心关注点。ORPC v0.23.0 通过引入 inputStructure 和 outputStructure 配置项,让开发者能够根据实际需求选择最适合的数据处理方式。
输入结构配置(inputStructure)
inputStructure 提供了两种模式来处理传入的请求数据:
-
compact(紧凑模式)
- 自动合并路径参数(params)与查询参数(query)或请求体(body)
- 简化了输入处理,适用于简单的 API 场景
- 减少了代码中处理不同来源参数的复杂度
-
detailed(详细模式)
- 保持路径参数、查询参数、请求头和请求体的分离
- 提供更精细的控制,适用于需要明确区分不同来源参数的复杂场景
- 保留了完整的请求上下文信息
输出结构配置(outputStructure)
同样地,outputStructure 也提供了两种响应数据处理方式:
-
compact(紧凑模式)
- 仅返回响应体内容
- 简化了响应结构,适用于大多数基础 API 场景
- 减少了不必要的数据传输
-
detailed(详细模式)
- 分离响应头和响应体
- 允许开发者精细控制响应头信息
- 适用于需要自定义 HTTP 头的高级场景
实际应用示例
以下是一个使用详细模式的完整示例,展示了如何定义和处理具有复杂结构的 API:
os.route({
inputStructure: 'detailed', // 使用详细输入结构
outputStructure: 'detailed' // 使用详细输出结构
})
.input(z.object({
params: z.object({ id: z.string() }), // 路径参数
query: z.object({ search: z.string() }), // 查询参数
body: z.object({ name: z.string() }).optional(), // 请求体
}))
.handler((input) => ({
body: { message: 'Hello' }, // 响应体
headers: { 'x-header': 'value' }, // 自定义响应头
}));
这个示例清晰地展示了如何:
- 分别定义路径参数、查询参数和请求体
- 在处理器中返回包含响应体和自定义头的完整响应
- 保持输入输出结构的明确分离
技术实现细节
在底层实现上,ORPC 通过增强 Zod 模式验证的能力来支持这一特性。Zod 是一个强大的 TypeScript 模式验证库,ORPC 利用它来:
- 根据选择的输入结构模式,自动重组或保持请求数据的原始结构
- 对不同类型的参数进行统一的类型验证
- 将复杂的模式定义转换为清晰的 OpenAPI 规范
值得注意的是,v0.23.0 还修复了 Zod 到 JSON Schema 转换过程中描述信息丢失的问题,进一步提升了文档生成的准确性。
适用场景分析
紧凑模式最适合:
- 简单的 CRUD 操作
- 快速原型开发
- 参数来源单一的 API 端点
详细模式则更适合:
- 需要精细控制 HTTP 头的 API
- 需要明确区分不同来源参数的复杂业务逻辑
- 需要向后兼容的历史 API
- 需要完整请求上下文的中间件处理
升级建议
对于现有项目,升级到 v0.23.0 后:
- 评估现有 API 是否需要更精细的输入输出控制
- 对于简单 API,可以考虑使用紧凑模式简化代码
- 对于复杂 API,详细模式可以提供更好的可维护性
- 注意检查 Zod 描述信息在文档生成中的表现
ORPC v0.23.0 的输入输出结构定制化功能为开发者提供了更灵活的数据处理方式,无论是构建简单的微服务还是复杂的企业级 API,都能找到合适的配置方案。这一特性的引入,进一步巩固了 ORPC 作为现代化 API 开发框架的地位。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00