ORPC v0.23.0 发布:输入输出结构定制化新特性解析
ORPC(OpenAPI RPC Framework)是一个基于 TypeScript 的 API 开发框架,它通过结合 OpenAPI 规范和 RPC 模式,为开发者提供了类型安全和高效的 API 开发体验。最新发布的 v0.23.0 版本引入了一个重要的新特性——输入输出结构定制化功能,这为 API 的数据处理方式带来了更大的灵活性。
输入输出结构定制化功能详解
在 API 开发中,请求和响应的数据结构处理是一个核心关注点。ORPC v0.23.0 通过引入 inputStructure 和 outputStructure 配置项,让开发者能够根据实际需求选择最适合的数据处理方式。
输入结构配置(inputStructure)
inputStructure 提供了两种模式来处理传入的请求数据:
-
compact(紧凑模式)
- 自动合并路径参数(params)与查询参数(query)或请求体(body)
- 简化了输入处理,适用于简单的 API 场景
- 减少了代码中处理不同来源参数的复杂度
-
detailed(详细模式)
- 保持路径参数、查询参数、请求头和请求体的分离
- 提供更精细的控制,适用于需要明确区分不同来源参数的复杂场景
- 保留了完整的请求上下文信息
输出结构配置(outputStructure)
同样地,outputStructure 也提供了两种响应数据处理方式:
-
compact(紧凑模式)
- 仅返回响应体内容
- 简化了响应结构,适用于大多数基础 API 场景
- 减少了不必要的数据传输
-
detailed(详细模式)
- 分离响应头和响应体
- 允许开发者精细控制响应头信息
- 适用于需要自定义 HTTP 头的高级场景
实际应用示例
以下是一个使用详细模式的完整示例,展示了如何定义和处理具有复杂结构的 API:
os.route({
inputStructure: 'detailed', // 使用详细输入结构
outputStructure: 'detailed' // 使用详细输出结构
})
.input(z.object({
params: z.object({ id: z.string() }), // 路径参数
query: z.object({ search: z.string() }), // 查询参数
body: z.object({ name: z.string() }).optional(), // 请求体
}))
.handler((input) => ({
body: { message: 'Hello' }, // 响应体
headers: { 'x-header': 'value' }, // 自定义响应头
}));
这个示例清晰地展示了如何:
- 分别定义路径参数、查询参数和请求体
- 在处理器中返回包含响应体和自定义头的完整响应
- 保持输入输出结构的明确分离
技术实现细节
在底层实现上,ORPC 通过增强 Zod 模式验证的能力来支持这一特性。Zod 是一个强大的 TypeScript 模式验证库,ORPC 利用它来:
- 根据选择的输入结构模式,自动重组或保持请求数据的原始结构
- 对不同类型的参数进行统一的类型验证
- 将复杂的模式定义转换为清晰的 OpenAPI 规范
值得注意的是,v0.23.0 还修复了 Zod 到 JSON Schema 转换过程中描述信息丢失的问题,进一步提升了文档生成的准确性。
适用场景分析
紧凑模式最适合:
- 简单的 CRUD 操作
- 快速原型开发
- 参数来源单一的 API 端点
详细模式则更适合:
- 需要精细控制 HTTP 头的 API
- 需要明确区分不同来源参数的复杂业务逻辑
- 需要向后兼容的历史 API
- 需要完整请求上下文的中间件处理
升级建议
对于现有项目,升级到 v0.23.0 后:
- 评估现有 API 是否需要更精细的输入输出控制
- 对于简单 API,可以考虑使用紧凑模式简化代码
- 对于复杂 API,详细模式可以提供更好的可维护性
- 注意检查 Zod 描述信息在文档生成中的表现
ORPC v0.23.0 的输入输出结构定制化功能为开发者提供了更灵活的数据处理方式,无论是构建简单的微服务还是复杂的企业级 API,都能找到合适的配置方案。这一特性的引入,进一步巩固了 ORPC 作为现代化 API 开发框架的地位。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00