ChatTTS在Apple Silicon芯片上的性能表现与优化建议
2025-05-04 12:43:21作者:房伟宁
ChatTTS作为一款开源的文本转语音工具,在不同硬件平台上的表现差异引起了开发者们的广泛关注。本文将重点分析ChatTTS在Apple Silicon芯片(M系列)上的运行表现,并给出针对性的优化建议。
Apple Silicon芯片运行ChatTTS的现状
根据多位开发者的实际测试,ChatTTS在Apple Silicon芯片上运行时存在一些性能问题:
-
内存消耗问题:使用MPS(Apple Metal Performance Shaders)版本时会出现内存爆满的情况,特别是在M2 Pro芯片上表现明显。降级到CPU版本后可以正常运行,但性能有所下降。
-
速度表现差异:在M2芯片上,CPU版本的运行速度约为1it/s,比NVIDIA 4090显卡(40-70it/s)慢很多。有趣的是,有开发者反馈M2芯片的CPU版本性能与NVIDIA 4070Ti相当。
-
流输出卡顿:即使在最新的M3 Max芯片上,流输出时仍会出现明显卡顿现象,这表明当前版本对Apple Silicon的优化还不够充分。
性能对比分析
从测试数据来看,不同硬件平台的性能差异显著:
- 高端NVIDIA显卡:4090显卡处理速度可达40-70it/s,处理2048个样本仅需26-42秒
- Apple Silicon:M2芯片CPU模式约1it/s,M3 Max虽然性能更强但仍存在卡顿
- 性能对比:M2 CPU ≈ 4070Ti < 4090
优化建议
针对Apple Silicon用户,建议采取以下优化措施:
- 版本选择:目前建议使用CPU版本而非MPS版本,以避免内存溢出问题
- 参数调整:适当降低batch size和并发数,减少内存压力
- 系统优化:确保macOS系统为最新版本,Metal驱动更新至最新
- 资源监控:运行时使用Activity Monitor监控内存和CPU使用情况
未来优化方向
从技术角度看,ChatTTS在Apple Silicon上的性能瓶颈可能来自:
- Metal后端对PyTorch运算的支持不够完善
- 模型量化程度不足,导致内存占用过高
- 缺乏针对Apple Neural Engine的专门优化
开发团队可以考虑:
- 增加对Core ML框架的支持
- 提供针对M系列芯片优化的量化模型
- 优化Metal后端的内存管理策略
总结
ChatTTS在Apple Silicon平台上的表现目前还不够理想,特别是与高端NVIDIA显卡相比存在明显差距。用户可以通过选择合适的运行版本和调整参数来获得相对稳定的体验。期待未来版本能够加强对Apple Silicon芯片的专门优化,充分发挥M系列芯片的神经网络加速能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355