Locust性能优化:使用deque提升TaskSet任务队列效率
在Python性能优化领域,数据结构的选择往往对程序运行效率有着决定性影响。本文将以Locust负载测试框架中的TaskSet任务队列为例,探讨如何通过合理选择数据结构来提升性能。
Locust框架中的TaskSet类负责管理和执行用户定义的各种负载测试任务。在内部实现中,TaskSet使用一个任务队列来维护待执行任务列表。原实现采用了Python内置的list类型作为底层数据结构,这在某些操作场景下可能存在性能隐患。
Python的list类型虽然功能强大,但其底层实现是基于动态数组的。当我们需要频繁在列表两端进行插入和删除操作时,list的性能表现并不理想。特别是对于pop(0)和insert(0, v)这类操作,list需要移动整个底层数组中的元素,时间复杂度为O(n)。
针对这种使用场景,Python标准库中提供了专门的collections.deque(双端队列)数据结构。deque专为高效的两端操作而设计,无论从哪一端插入或删除元素,都能保持O(1)的时间复杂度。此外,deque还具备线程安全的特性,非常适合Locust这类并发测试框架的使用场景。
在实际测试中,当TaskSet的任务队列较长且频繁进行两端操作时,使用deque替代list可以带来显著的性能提升。这种优化虽然对单个操作的影响可能微不足道,但在高并发、长时间运行的负载测试场景下,累积的优化效果将十分可观。
对于Locust用户而言,这一优化是完全透明的,不会影响现有的测试脚本编写方式。框架内部的数据结构变更确保了用户无需修改任何代码就能享受到性能提升带来的好处。
这种优化思路也适用于其他类似的场景:当我们需要频繁操作序列的两端时,应该优先考虑使用deque而非list。这是Python性能优化中一个经典而有效的实践。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00