ViDeNN 深度盲视频去噪教程
2024-09-25 16:43:47作者:胡易黎Nicole
1. 项目介绍
ViDeNN 是一个深度学习项目,专注于盲视频去噪。该项目使用全卷积神经网络(CNN)来处理视频中的噪声,无需事先了解噪声的分布。ViDeNN 能够处理不同类型的视频噪声,如加性白高斯噪声(AWGN)和低光条件下的噪声。
主要特点
- 盲去噪:无需任何关于输入视频内容的先验信息。
- 多种噪声处理:支持加性白高斯噪声和低光条件下的噪声处理。
- 灵活性:可以根据机器的内存大小处理不同尺寸的视频。
2. 项目快速启动
安装依赖
首先,克隆或下载并解压缩项目仓库:
git clone https://github.com/clausmichele/ViDeNN.git
cd ViDeNN
使用 Python 3.6 或更低版本安装依赖项:
pip install -r requirements.txt
如果你打算使用 GPU 加速处理,请确保安装了相应的 API(例如 NVIDIA 的 CUDA)。
视频去噪
ViDeNN 仅适用于图像序列,因此你需要先将视频导出为图像序列。你可以使用任何编辑软件或使用 ffmpeg
工具:
ffmpeg -nostats -loglevel 0 -i /path/to/my/video /path/to/my/images/%04d.png
然后运行去噪脚本:
python main_ViDeNN.py --use_gpu=1 --checkpoint_dir=ckpt_videnn --save_dir='/path/to/my/denoised_images' --test_dir='/path/to/my/images/'
参数说明:
--use_gpu=1
:使用 GPU(默认使用 CPU)。--checkpoint_dir=ckpt_videnn
:使用预训练模型。--save_dir
:保存去噪后的图像序列。--test_dir
:输入的图像序列目录。
使用去噪后的输出
去噪完成后,你可以将图像序列重新编码为视频格式。使用 ffmpeg
:
ffmpeg -i /path/to/my/denoised_images/%04d.png /path/to/denoised.mp4
3. 应用案例和最佳实践
应用案例
- 低光视频增强:ViDeNN 可以有效去除低光条件下的视频噪声,提升视频质量。
- 视频监控:在监控视频中,噪声可能会影响关键信息的识别,使用 ViDeNN 可以提高视频的清晰度。
最佳实践
- 选择合适的模型:根据噪声类型选择合适的预训练模型(如
ckpt_videnn
或ckpt_videnn-g
)。 - 内存管理:如果 GPU 内存不足,可以尝试使用 CPU 进行去噪,或对视频进行降采样或裁剪。
4. 典型生态项目
- FFmpeg:用于视频和图像序列的转换,是 ViDeNN 项目中常用的工具。
- TensorFlow:ViDeNN 项目使用的深度学习框架,支持 GPU 加速。
- CUDA:NVIDIA 的并行计算平台,用于加速 GPU 上的深度学习任务。
通过这些工具和项目的结合,ViDeNN 能够高效地处理视频去噪任务,提升视频质量。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
988
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
288