ViDeNN 深度盲视频去噪教程
2024-09-25 18:37:31作者:胡易黎Nicole
1. 项目介绍
ViDeNN 是一个深度学习项目,专注于盲视频去噪。该项目使用全卷积神经网络(CNN)来处理视频中的噪声,无需事先了解噪声的分布。ViDeNN 能够处理不同类型的视频噪声,如加性白高斯噪声(AWGN)和低光条件下的噪声。
主要特点
- 盲去噪:无需任何关于输入视频内容的先验信息。
- 多种噪声处理:支持加性白高斯噪声和低光条件下的噪声处理。
- 灵活性:可以根据机器的内存大小处理不同尺寸的视频。
2. 项目快速启动
安装依赖
首先,克隆或下载并解压缩项目仓库:
git clone https://github.com/clausmichele/ViDeNN.git
cd ViDeNN
使用 Python 3.6 或更低版本安装依赖项:
pip install -r requirements.txt
如果你打算使用 GPU 加速处理,请确保安装了相应的 API(例如 NVIDIA 的 CUDA)。
视频去噪
ViDeNN 仅适用于图像序列,因此你需要先将视频导出为图像序列。你可以使用任何编辑软件或使用 ffmpeg 工具:
ffmpeg -nostats -loglevel 0 -i /path/to/my/video /path/to/my/images/%04d.png
然后运行去噪脚本:
python main_ViDeNN.py --use_gpu=1 --checkpoint_dir=ckpt_videnn --save_dir='/path/to/my/denoised_images' --test_dir='/path/to/my/images/'
参数说明:
--use_gpu=1:使用 GPU(默认使用 CPU)。--checkpoint_dir=ckpt_videnn:使用预训练模型。--save_dir:保存去噪后的图像序列。--test_dir:输入的图像序列目录。
使用去噪后的输出
去噪完成后,你可以将图像序列重新编码为视频格式。使用 ffmpeg:
ffmpeg -i /path/to/my/denoised_images/%04d.png /path/to/denoised.mp4
3. 应用案例和最佳实践
应用案例
- 低光视频增强:ViDeNN 可以有效去除低光条件下的视频噪声,提升视频质量。
- 视频监控:在监控视频中,噪声可能会影响关键信息的识别,使用 ViDeNN 可以提高视频的清晰度。
最佳实践
- 选择合适的模型:根据噪声类型选择合适的预训练模型(如
ckpt_videnn或ckpt_videnn-g)。 - 内存管理:如果 GPU 内存不足,可以尝试使用 CPU 进行去噪,或对视频进行降采样或裁剪。
4. 典型生态项目
- FFmpeg:用于视频和图像序列的转换,是 ViDeNN 项目中常用的工具。
- TensorFlow:ViDeNN 项目使用的深度学习框架,支持 GPU 加速。
- CUDA:NVIDIA 的并行计算平台,用于加速 GPU 上的深度学习任务。
通过这些工具和项目的结合,ViDeNN 能够高效地处理视频去噪任务,提升视频质量。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110