探索Noise2Self:无需监督的盲噪点去除框架
2024-05-21 14:26:08作者:庞眉杨Will
在这个数字信息爆炸的时代,数据质量是我们追求精准分析的关键所在。当高维度测量数据受到噪声干扰时,Noise2Self 提供了一个创新的框架,通过自我监督的方式实现盲噪点去除,无论是图像处理还是单细胞基因表达矩阵,它都能大显身手。

(注:上图展示了训练U-Net模型去除汉字噪声的效果,仅使用了含噪声的数据,无需任何真实值输入。)
项目简介
Noise2Self 是一个基于Python的开源项目,其核心思想在于利用自监督学习来校准和训练模型进行噪声去除。该框架能对传统图像去噪算法如中值滤波、小波阈值或非局部均值等进行校准,并能训练深度神经网络应对更复杂的任务。特别的是,该项目甚至可以在单一图像上训练出能够有效去除噪声的神经网络。
技术分析
Noise2Self 的工作流程分为两部分:
- 传统模型校准:通过引入自我监督的损失函数,即使没有干净的无噪数据,也能优化已有的图像去噪算法,提高其在有噪声环境中的表现。
- 深度学习训练:采用Masker类,每次训练迭代时会为输入数据添加随机掩码,以此构建自监督信号。这使得我们可以直接在现有深度学习架构上修改训练循环,而不需要额外的数据预处理或后处理步骤。
例如,传统的监督学习训练循环如下:
for i, batch in enumerate(data_loader):
noisy_images, clean_images = batch
output = model(noisy_images)
loss = loss_function(output, clean_images)
而在 Noise2Self 中,只需稍作修改:
from mask import Masker
masker = Masker()
for i, batch in enumerate(data_loader):
noisy_images, _ = batch
input, mask = masker.mask(noisy_images, i)
output = model(input)
loss = loss_function(output*mask, noisy_images*mask)
依赖项在 environment.yml 文件中列出。
应用场景
Noise2Self 可广泛应用于多个领域:
- 图像处理:它不仅适用于图像修复和增强,还能够帮助提升计算机视觉应用如识别和检测的性能。
- 生物信息学:在单细胞RNA测序数据分析中, Noise2Self 能够消除噪声影响,揭示更精确的基因表达模式。
项目特点
- 无需真值标注:借助自监督学习, Noise2Self 可以在没有干净图像的情况下进行训练。
- 易于集成:无论是校准现有的图像处理算法,还是训练深度神经网络, Noise2Self 都提供了简单易懂的接口。
- 高效灵活:即使在CPU上也能快速运行,且可以轻松适应不同的数据集和模型结构。
- 广泛应用:从简单的图像到复杂的生物数据, Noise2Self 都能提供解决方案。
如果你正在寻找一个强大的工具来提升你的数据清洗效率, Noise2Self 绝对值得尝试。立即加入这个社区,开始你的自监督降噪之旅吧!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
405
3.14 K
Ascend Extension for PyTorch
Python
225
251
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
657
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868