LangChain项目中使用ChatDeepSeek实现结构化输出的技术实践
在LangChain生态系统中,ChatDeepSeek作为新兴的聊天模型组件,为开发者提供了强大的自然语言处理能力。本文将深入探讨如何正确使用ChatDeepSeek实现结构化输出,特别是针对函数调用和工具绑定的实现方式。
结构化输出的重要性
在构建AI应用时,我们经常需要从非结构化文本中提取结构化数据。传统方法通常需要复杂的正则表达式或自定义解析逻辑,而LangChain提供的结构化输出功能可以大大简化这一过程。
实现方案对比
初始方案的问题
开发者最初尝试使用bind()
方法结合JsonOutputFunctionsParser
来实现结构化输出,但遇到了KeyError: 'function_call'
错误。这表明模型响应中缺少预期的函数调用字段,导致解析失败。
改进后的解决方案
经过实践验证,更可靠的实现方式是使用工具绑定(bind_tools
)结合JsonOutputToolsParser
。这种方法更符合当前LangChain的最佳实践,且能稳定工作。
完整实现代码
以下是经过验证的可靠实现方案:
from langchain_deepseek import ChatDeepSeek
from langchain.prompts import ChatPromptTemplate
from langchain_core.utils.function_calling import convert_to_openai_function
from langchain.output_parsers import JsonOutputToolsParser
from pydantic import BaseModel, Field
# 定义日志标签的数据模型
class Tagging(BaseModel):
"""日志内容标签模型"""
status: str = Field(description="日志状态,可选值: 'success', 'failure', 'pending', 'timeout'")
error_info: str = Field(description="失败状态时的错误信息,请用英文描述")
# 将Pydantic模型转换为OpenAI函数格式
function_def = convert_to_openai_function(Tagging)
tool = {"type": "function", "function": function_def}
# 创建模型实例并绑定工具
llm = ChatDeepSeek(
model='deepseek-ai/DeepSeek-V2.5',
api_base="https://api.siliconflow.cn/v1",
api_key="your_api_key_here"
).bind(
tools=[tool],
tool_choice={"type": "function", "function": {"name": "Tagging"}}
)
# 构建处理链
prompt = ChatPromptTemplate.from_template("从以下文本提取日志信息: {input}")
chain = prompt | llm | JsonOutputToolsParser()
# 执行处理链
result = chain.invoke({"input": "进程退出代码: 0"})
print(result)
关键点解析
-
数据模型定义:使用Pydantic的BaseModel明确定义需要提取的数据结构,包括字段类型和描述。
-
函数转换:
convert_to_openai_function
将Pydantic模型转换为模型可识别的函数定义格式。 -
工具绑定:通过
bind()
方法将工具定义绑定到模型实例,并指定默认使用的工具。 -
解析器选择:使用
JsonOutputToolsParser
替代旧的JsonOutputFunctionsParser
,这是当前推荐的做法。
实际应用场景
这种结构化输出技术特别适用于以下场景:
- 日志分析系统
- 客户支持工单分类
- 电商评论情感分析
- 任何需要从文本中提取结构化数据的应用
性能优化建议
-
温度参数:对于需要确定输出的场景,建议设置
temperature=0
以获得更稳定的结果。 -
批量处理:对于大量文本,可以考虑使用批量处理提高效率。
-
错误处理:在实际应用中应添加适当的错误处理逻辑,应对模型可能返回的各种情况。
通过本文介绍的方法,开发者可以充分利用ChatDeepSeek在LangChain生态中的能力,实现高效可靠的结构化数据提取,为构建更复杂的AI应用打下坚实基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0302- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









