Locust性能测试中的内存泄漏问题分析与解决
问题背景
在使用Locust进行大规模性能测试时,部分用户报告了内存持续增长的问题。当模拟大量用户(如30,000个)时,系统内存使用量会显著增加,最终可能导致系统因内存耗尽而崩溃。这一问题在使用FastHttpClient时尤为明显,但同样存在于基于requests的HttpUser实现中。
问题现象
测试过程中观察到的典型现象包括:
- 内存使用量随用户数量线性增长,30,000用户约消耗30GB内存
- 内存增长在达到目标用户数后趋于稳定
- 停止测试后内存不会被释放
- 重新开始测试不会导致内存进一步增加
- 系统最终可能因内存耗尽而崩溃
技术分析
内存增长原因
经过深入分析,发现内存增长主要与以下因素有关:
-
连接池管理:默认情况下,每个用户实例都会创建自己的连接池。当用户数量庞大时,这些连接池会占用大量内存。
-
错误信息存储:测试中产生的错误信息(特别是包含动态内容的错误)会被单独存储,当错误类型多样时,会消耗额外内存。
-
Python内存管理:某些Python版本(如3.9)在内存回收方面不如新版本(如3.11+)高效。
关键代码片段分析
问题最常出现在类似以下代码模式中:
@task
def req(self):
with self.client.get(url, catch_response=True) as resp:
if condition:
resp.failure(f"Custom error: {dynamic_value}")
这种模式会产生大量独特的错误信息,每个都会被单独存储。
解决方案
1. 使用共享连接池
通过配置所有用户共享一个大连接池,可以显著减少内存使用:
class MyUser(FastHttpUser):
client_pool = HTTPClientPool(concurrency=10000)
注意:这种方法会影响测试的准确性,因为用户会共享连接。
2. 优化错误处理
避免生成大量独特的错误信息:
# 不推荐 - 会产生大量独特错误
resp.failure(f"Request took too long: {response_time:.3f}")
# 推荐 - 使用固定错误信息
resp.failure("Request timeout")
3. 显式资源清理
对于需要频繁创建和销毁用户的情况,确保正确关闭连接:
def on_stop(self):
self.client.close()
4. 升级Python和Locust版本
使用Python 3.11+和最新版Locust可以获得更好的内存管理性能。
最佳实践建议
-
监控内存使用:在测试过程中密切监控内存使用情况,设置合理的用户上限。
-
分布式测试:考虑使用多台机器分布式测试,而非单机运行大量用户。
-
渐进式测试:从小规模测试开始,逐步增加用户数量,观察系统行为。
-
错误信息设计:精心设计错误信息,避免产生大量独特错误条目。
-
连接管理:根据测试需求合理配置连接池,平衡内存使用和测试准确性。
总结
Locust在大规模性能测试中的内存问题主要源于连接池管理和错误信息存储策略。通过优化连接池配置、改进错误处理方式以及升级到更新的Python版本,可以有效控制内存使用。对于极端规模的测试,建议采用分布式部署方案,将负载分散到多台测试机器上。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00