Ragas项目中自定义评估指标提示的实践指南
2025-05-26 20:24:29作者:段琳惟
概述
在Ragas项目(一个用于评估检索增强生成系统的开源框架)中,用户经常需要根据特定需求自定义评估指标的提示模板。本文详细介绍如何在Ragas 0.2.6版本中实现这一功能,帮助开发者更好地适应不同场景下的评估需求。
背景
Ragas框架提供了多种预定义的评估指标,如Faithfulness(忠实度)等。这些指标使用特定的提示模板与语言模型交互,生成评估结果。但在实际应用中,开发者可能需要修改这些提示模板以适应特定领域或评估标准。
核心实现方法
1. 获取现有提示
首先需要获取当前指标使用的提示模板:
from ragas.metrics import Faithfulness
# 初始化评估器
scorer = Faithfulness(llm=evaluator_llm)
# 获取所有提示模板
prompts = scorer.get_prompts()
2. 修改提示内容
Ragas中的提示模板通常包含以下可修改元素:
- instruction:核心指令
- examples:示例列表
- 其他特定于提示类型的属性
# 获取特定提示
statement_prompt = prompts["n_l_i_statement_prompt"]
verdict_prompt = prompts["statement_generator_prompt"]
# 修改指令
statement_prompt.instruction = "新的声明分解提示"
verdict_prompt.instruction = "新的裁决生成提示"
# 修改示例(需符合原提示的示例格式)
statement_prompt.examples = []
verdict_prompt.examples = []
3. 应用修改后的提示
将修改后的提示重新设置到评估器中:
scorer.set_prompts(
**{
"n_l_i_statement_prompt": statement_prompt,
"statement_generator_prompt": verdict_prompt,
}
)
最佳实践建议
- 保持格式一致性:修改示例时,确保新示例的格式与原提示要求的格式一致
- 逐步测试:建议先小规模修改并测试效果,再全面应用
- 文档参考:虽然本文提供了核心方法,但建议结合Ragas官方文档了解各指标提示的具体结构和要求
- 版本兼容性:不同版本的Ragas可能在提示处理方式上有差异,注意检查版本说明
常见问题解决
若遇到"ModuleNotFoundError: No module named 'ragas.llms.prompt'"错误,说明直接导入Prompt类的方式在新版本中已不适用。应改用上述通过评估器实例获取和修改提示的方法。
总结
通过本文介绍的方法,开发者可以灵活地自定义Ragas评估指标中的提示模板,从而更好地适应特定应用场景的需求。这种定制化能力使得Ragas框架在不同领域的检索增强生成系统评估中具有更强的适应性和实用性。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443