推荐文章:利用Tabular Transformers优化多变量时间序列建模
2024-05-22 13:55:22作者:毕习沙Eudora
推荐文章:利用Tabular Transformers优化多变量时间序列建模
1、项目介绍
在数据科学的世界里,处理结构化的表格数据(如CSV)和多变量时间序列预测是常见的挑战。Tabular Transformers for Modeling Multivariate Time Series 是一项创新的研究成果,它引入了一种新的方法——TabFormer,这个开源项目提供了PyTorch实现的源代码和相关数据。该项目将在ICASSP 2021会议上展示,并且构建在HuggingFace的transformers库之上。
2、项目技术分析
Tabular Transformers的核心是模块化的层次式Transformer设计,特别适用于处理有结构的表格数据。项目中还包括了一个用于处理掩码的修改版Adaptive Softmax以及针对表格数据的定制化 _DataCollatorForLanguageModeling_。这项工作不仅扩展了BERT和GPT2模型以适应表格数据,还提供了一个合成的信用卡交易数据集,用于测试和验证模型的效果。
3、项目及技术应用场景
这个项目特别适合于对金融交易记录(如信用卡交易)、环境监测数据(如空气质量指数)等多变量时间序列进行建模。例如,你可以训练一个Tabular BERT模型来捕捉北京PM2.5数据中的模式,或者使用Tabular GPT2来学习特定用户的信用卡交易模式。
4、项目特点
- 灵活性:项目支持两种主流的Transformer架构——BERT和GPT2,可以适应不同的任务需求。
- 数据处理:提供了针对表格数据的特殊处理机制,包括字段级Transformer和masking。
- 实用性:附带了一个大型的信用卡交易数据集,方便用户直接进行实验。
- 易用性:基于Python和PyTorch开发,与HuggingFace Transformers库兼容,便于集成到现有项目中。
- 可扩展性:代码结构清晰,易于进一步的模块化改进和扩展。
为了开始使用,只需确保满足项目的依赖要求(Python 3.7,PyTorch 1.6.0等),并按照提供的指令运行脚本。对于数据量较大的情况,还有Git LFS支持,确保高效的数据管理。
如果你正在寻求一种强大而灵活的方法来处理多变量时间序列数据,那么Tabular Transformers绝对值得尝试。通过其创新的设计和强大的功能,它能够为你的数据分析工作带来新的可能。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
Ascend Extension for PyTorch
Python
240
276
暂无简介
Dart
696
163
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
269
328
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
674
仓颉编译器源码及 cjdb 调试工具。
C++
138
869