推荐文章:利用Tabular Transformers优化多变量时间序列建模
2024-05-22 13:55:22作者:毕习沙Eudora
推荐文章:利用Tabular Transformers优化多变量时间序列建模
1、项目介绍
在数据科学的世界里,处理结构化的表格数据(如CSV)和多变量时间序列预测是常见的挑战。Tabular Transformers for Modeling Multivariate Time Series 是一项创新的研究成果,它引入了一种新的方法——TabFormer,这个开源项目提供了PyTorch实现的源代码和相关数据。该项目将在ICASSP 2021会议上展示,并且构建在HuggingFace的transformers库之上。
2、项目技术分析
Tabular Transformers的核心是模块化的层次式Transformer设计,特别适用于处理有结构的表格数据。项目中还包括了一个用于处理掩码的修改版Adaptive Softmax以及针对表格数据的定制化 _DataCollatorForLanguageModeling_。这项工作不仅扩展了BERT和GPT2模型以适应表格数据,还提供了一个合成的信用卡交易数据集,用于测试和验证模型的效果。
3、项目及技术应用场景
这个项目特别适合于对金融交易记录(如信用卡交易)、环境监测数据(如空气质量指数)等多变量时间序列进行建模。例如,你可以训练一个Tabular BERT模型来捕捉北京PM2.5数据中的模式,或者使用Tabular GPT2来学习特定用户的信用卡交易模式。
4、项目特点
- 灵活性:项目支持两种主流的Transformer架构——BERT和GPT2,可以适应不同的任务需求。
- 数据处理:提供了针对表格数据的特殊处理机制,包括字段级Transformer和masking。
- 实用性:附带了一个大型的信用卡交易数据集,方便用户直接进行实验。
- 易用性:基于Python和PyTorch开发,与HuggingFace Transformers库兼容,便于集成到现有项目中。
- 可扩展性:代码结构清晰,易于进一步的模块化改进和扩展。
为了开始使用,只需确保满足项目的依赖要求(Python 3.7,PyTorch 1.6.0等),并按照提供的指令运行脚本。对于数据量较大的情况,还有Git LFS支持,确保高效的数据管理。
如果你正在寻求一种强大而灵活的方法来处理多变量时间序列数据,那么Tabular Transformers绝对值得尝试。通过其创新的设计和强大的功能,它能够为你的数据分析工作带来新的可能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
264
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.34 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1