首页
/ 推荐文章:利用Tabular Transformers优化多变量时间序列建模

推荐文章:利用Tabular Transformers优化多变量时间序列建模

2024-05-22 13:55:22作者:毕习沙Eudora

推荐文章:利用Tabular Transformers优化多变量时间序列建模

1、项目介绍

在数据科学的世界里,处理结构化的表格数据(如CSV)和多变量时间序列预测是常见的挑战。Tabular Transformers for Modeling Multivariate Time Series 是一项创新的研究成果,它引入了一种新的方法——TabFormer,这个开源项目提供了PyTorch实现的源代码和相关数据。该项目将在ICASSP 2021会议上展示,并且构建在HuggingFace的transformers库之上。

2、项目技术分析

Tabular Transformers的核心是模块化的层次式Transformer设计,特别适用于处理有结构的表格数据。项目中还包括了一个用于处理掩码的修改版Adaptive Softmax以及针对表格数据的定制化 _DataCollatorForLanguageModeling_。这项工作不仅扩展了BERT和GPT2模型以适应表格数据,还提供了一个合成的信用卡交易数据集,用于测试和验证模型的效果。

3、项目及技术应用场景

这个项目特别适合于对金融交易记录(如信用卡交易)、环境监测数据(如空气质量指数)等多变量时间序列进行建模。例如,你可以训练一个Tabular BERT模型来捕捉北京PM2.5数据中的模式,或者使用Tabular GPT2来学习特定用户的信用卡交易模式。

4、项目特点

  • 灵活性:项目支持两种主流的Transformer架构——BERT和GPT2,可以适应不同的任务需求。
  • 数据处理:提供了针对表格数据的特殊处理机制,包括字段级Transformer和masking。
  • 实用性:附带了一个大型的信用卡交易数据集,方便用户直接进行实验。
  • 易用性:基于Python和PyTorch开发,与HuggingFace Transformers库兼容,便于集成到现有项目中。
  • 可扩展性:代码结构清晰,易于进一步的模块化改进和扩展。

为了开始使用,只需确保满足项目的依赖要求(Python 3.7,PyTorch 1.6.0等),并按照提供的指令运行脚本。对于数据量较大的情况,还有Git LFS支持,确保高效的数据管理。

如果你正在寻求一种强大而灵活的方法来处理多变量时间序列数据,那么Tabular Transformers绝对值得尝试。通过其创新的设计和强大的功能,它能够为你的数据分析工作带来新的可能。

登录后查看全文
热门项目推荐

热门内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K
kernelkernel
deepin linux kernel
C
22
6
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
981
395
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
932
555
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
519
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0