推荐:transformers-ner —— 基于Transformers的命名实体识别利器
2024-06-08 20:52:23作者:范靓好Udolf
1、项目介绍
transformers-ner 是一个强大的Python项目,利用Hugging Face的Transformers库,专为处理中文和英文的命名实体识别(NER)任务而设计。这个开源工具包涵盖了多种预训练模型,并支持softmax、CRF和span等不同的解码策略,旨在提供高效且准确的NER解决方案。
2、项目技术分析
该项目的核心在于其对Hugging Face的Transformers库的灵活运用。Transformers是一个广受欢迎的库,包含了一系列先进的预训练模型,如BERT、ALBERT、ELECTRA、RoBERTa以及DistilBERT等。通过这些模型,transformers-ner 能够捕获文本中的深层语义信息,从而在NER任务中取得优秀性能。
除了模型选择多样性,项目还提供了多种解码策略:
- Softmax: 直接预测每个位置的标签。
- CRF (Conditional Random Fields): 利用序列信息进行全局最优解。
- Span: 预测连续的词组作为实体,更适用于实体较长的情况。
此外,项目已内置了CLUENER(中文)和CoNLL2003(英文)两个常见NER数据集,方便用户直接开始训练或评估。
3、项目及技术应用场景
transformers-ner 可广泛应用于各种自然语言处理场景,包括但不限于:
- 新闻分析与摘要:识别新闻中的关键人物、地点和事件。
- 社交媒体监控:提取用户提及的品牌、事件或情感标记。
- 机器翻译:辅助识别并保留原文实体信息。
- 智能客服:自动识别问题中的问题类型和相关信息。
4、项目特点
- 多语言支持:不仅支持英文NER,还包括对中文NER的支持,适应性广泛。
- 多样化模型:涵盖多个Transformer变体,可以根据具体任务需求选择最合适的模型。
- 易用性:简单的脚本执行方式(
sh scripts/run_xxx_ner.sh),易于上手,快速启动实验。 - 灵活性:提供三种不同的解码策略,以平衡效率和准确性。
- 成熟的数据集集成:内置常用数据集,方便基准测试和训练。
如果你正在寻找一个强大的NER工具来提升你的NLP应用,不妨试试transformers-ner。只需满足基础的PyTorch和Transformers版本要求,即可轻松开启你的NER之旅。赶紧行动起来,探索这个项目的无限潜力吧!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111