KServe日志功能在非Knative环境下的配置与使用
2025-06-16 01:26:52作者:郜逊炳
背景介绍
KServe作为Kubernetes上的模型服务框架,提供了强大的日志功能,允许用户将模型预测的请求和响应记录到指定的日志收集服务中。本文将详细介绍如何在非Knative环境下配置和使用KServe的日志功能。
日志功能基本配置
在KServe中,日志功能通过InferenceService资源中的logger字段进行配置。一个典型的配置示例如下:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: sklearn
spec:
predictor:
logger:
mode: all
url: http://message-dumper/
model:
modelFormat:
name: sklearn
storageUri: gs://kfserving-examples/models/sklearn/1.0/model
其中关键配置项包括:
mode: 指定日志记录模式,可以是all(记录请求和响应)、request(仅记录请求)或response(仅记录响应)url: 指定日志接收服务的地址
日志接收服务实现
日志接收服务可以是一个简单的HTTP服务,只需要实现POST方法即可。以下是一个使用Flask实现的日志接收服务示例:
from flask import Flask, request
app = Flask(__name__)
@app.route('/', methods=['POST'])
def log_request():
# 记录请求头
metadata_headers = ["x-request-id", "x-b3-traceid", "x-b3-spanid", "x-b3-flags"]
print("Received Request:")
for header in metadata_headers:
value = request.headers.get(header, "Not provided")
print(f"{header}: {value}")
# 记录请求体
print("Payload:")
print(request.data.decode('utf-8'))
return "Logged", 200
部署注意事项
-
服务发现:日志接收服务的URL可以使用Kubernetes服务发现机制。如果日志服务与InferenceService在同一命名空间,可以直接使用服务名;跨命名空间则需要使用完整域名格式。
-
网络连通性:确保InferenceService的Pod能够访问日志接收服务。在Istio环境中,可能需要配置相应的网络策略。
-
日志延迟:日志可能不会立即出现在接收服务中,KServe会批量发送日志以提高效率。
日志内容分析
成功请求的日志会包含以下信息:
- 请求头:包括x-request-id等追踪信息
- 响应体:模型预测的结果
例如:
Received Request:
x-request-id: e4123d01-5d29-9ab8-8f4a-76761d62d18b
x-b3-traceid: 4933d0bdf218ca0c3b514339c0f9fd9f
x-b3-spanid: 2d576fcb7dd00f52
Payload:
{"predictions":[1,1]}
当前限制
需要注意的是,当前版本的KServe日志功能仅记录成功的请求和响应。对于失败的请求(如无效输入导致的400错误),这些错误信息不会发送到配置的日志接收服务,而是直接输出到模型容器的日志中。
最佳实践
-
对于生产环境,建议日志接收服务实现持久化存储,而不仅仅是打印到控制台。
-
考虑日志服务的性能影响,特别是在高并发场景下,可能需要调整日志服务的资源配置。
-
对于关键业务场景,可以结合KServe日志和容器日志实现完整的可观测性方案。
通过合理配置和使用KServe的日志功能,可以有效地监控和分析模型服务的请求和响应,为模型性能优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1