KServe日志功能在非Knative环境下的配置与使用
2025-06-16 13:45:32作者:郜逊炳
背景介绍
KServe作为Kubernetes上的模型服务框架,提供了强大的日志功能,允许用户将模型预测的请求和响应记录到指定的日志收集服务中。本文将详细介绍如何在非Knative环境下配置和使用KServe的日志功能。
日志功能基本配置
在KServe中,日志功能通过InferenceService资源中的logger字段进行配置。一个典型的配置示例如下:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: sklearn
spec:
predictor:
logger:
mode: all
url: http://message-dumper/
model:
modelFormat:
name: sklearn
storageUri: gs://kfserving-examples/models/sklearn/1.0/model
其中关键配置项包括:
mode: 指定日志记录模式,可以是all(记录请求和响应)、request(仅记录请求)或response(仅记录响应)url: 指定日志接收服务的地址
日志接收服务实现
日志接收服务可以是一个简单的HTTP服务,只需要实现POST方法即可。以下是一个使用Flask实现的日志接收服务示例:
from flask import Flask, request
app = Flask(__name__)
@app.route('/', methods=['POST'])
def log_request():
# 记录请求头
metadata_headers = ["x-request-id", "x-b3-traceid", "x-b3-spanid", "x-b3-flags"]
print("Received Request:")
for header in metadata_headers:
value = request.headers.get(header, "Not provided")
print(f"{header}: {value}")
# 记录请求体
print("Payload:")
print(request.data.decode('utf-8'))
return "Logged", 200
部署注意事项
-
服务发现:日志接收服务的URL可以使用Kubernetes服务发现机制。如果日志服务与InferenceService在同一命名空间,可以直接使用服务名;跨命名空间则需要使用完整域名格式。
-
网络连通性:确保InferenceService的Pod能够访问日志接收服务。在Istio环境中,可能需要配置相应的网络策略。
-
日志延迟:日志可能不会立即出现在接收服务中,KServe会批量发送日志以提高效率。
日志内容分析
成功请求的日志会包含以下信息:
- 请求头:包括x-request-id等追踪信息
- 响应体:模型预测的结果
例如:
Received Request:
x-request-id: e4123d01-5d29-9ab8-8f4a-76761d62d18b
x-b3-traceid: 4933d0bdf218ca0c3b514339c0f9fd9f
x-b3-spanid: 2d576fcb7dd00f52
Payload:
{"predictions":[1,1]}
当前限制
需要注意的是,当前版本的KServe日志功能仅记录成功的请求和响应。对于失败的请求(如无效输入导致的400错误),这些错误信息不会发送到配置的日志接收服务,而是直接输出到模型容器的日志中。
最佳实践
-
对于生产环境,建议日志接收服务实现持久化存储,而不仅仅是打印到控制台。
-
考虑日志服务的性能影响,特别是在高并发场景下,可能需要调整日志服务的资源配置。
-
对于关键业务场景,可以结合KServe日志和容器日志实现完整的可观测性方案。
通过合理配置和使用KServe的日志功能,可以有效地监控和分析模型服务的请求和响应,为模型性能优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
375
3.25 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76