KServe日志功能在非Knative环境下的配置与使用
2025-06-16 07:03:15作者:郜逊炳
背景介绍
KServe作为Kubernetes上的模型服务框架,提供了强大的日志功能,允许用户将模型预测的请求和响应记录到指定的日志收集服务中。本文将详细介绍如何在非Knative环境下配置和使用KServe的日志功能。
日志功能基本配置
在KServe中,日志功能通过InferenceService资源中的logger字段进行配置。一个典型的配置示例如下:
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
name: sklearn
spec:
predictor:
logger:
mode: all
url: http://message-dumper/
model:
modelFormat:
name: sklearn
storageUri: gs://kfserving-examples/models/sklearn/1.0/model
其中关键配置项包括:
mode
: 指定日志记录模式,可以是all
(记录请求和响应)、request
(仅记录请求)或response
(仅记录响应)url
: 指定日志接收服务的地址
日志接收服务实现
日志接收服务可以是一个简单的HTTP服务,只需要实现POST方法即可。以下是一个使用Flask实现的日志接收服务示例:
from flask import Flask, request
app = Flask(__name__)
@app.route('/', methods=['POST'])
def log_request():
# 记录请求头
metadata_headers = ["x-request-id", "x-b3-traceid", "x-b3-spanid", "x-b3-flags"]
print("Received Request:")
for header in metadata_headers:
value = request.headers.get(header, "Not provided")
print(f"{header}: {value}")
# 记录请求体
print("Payload:")
print(request.data.decode('utf-8'))
return "Logged", 200
部署注意事项
-
服务发现:日志接收服务的URL可以使用Kubernetes服务发现机制。如果日志服务与InferenceService在同一命名空间,可以直接使用服务名;跨命名空间则需要使用完整域名格式。
-
网络连通性:确保InferenceService的Pod能够访问日志接收服务。在Istio环境中,可能需要配置相应的网络策略。
-
日志延迟:日志可能不会立即出现在接收服务中,KServe会批量发送日志以提高效率。
日志内容分析
成功请求的日志会包含以下信息:
- 请求头:包括x-request-id等追踪信息
- 响应体:模型预测的结果
例如:
Received Request:
x-request-id: e4123d01-5d29-9ab8-8f4a-76761d62d18b
x-b3-traceid: 4933d0bdf218ca0c3b514339c0f9fd9f
x-b3-spanid: 2d576fcb7dd00f52
Payload:
{"predictions":[1,1]}
当前限制
需要注意的是,当前版本的KServe日志功能仅记录成功的请求和响应。对于失败的请求(如无效输入导致的400错误),这些错误信息不会发送到配置的日志接收服务,而是直接输出到模型容器的日志中。
最佳实践
-
对于生产环境,建议日志接收服务实现持久化存储,而不仅仅是打印到控制台。
-
考虑日志服务的性能影响,特别是在高并发场景下,可能需要调整日志服务的资源配置。
-
对于关键业务场景,可以结合KServe日志和容器日志实现完整的可观测性方案。
通过合理配置和使用KServe的日志功能,可以有效地监控和分析模型服务的请求和响应,为模型性能优化和问题排查提供有力支持。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0109AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
65
96

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
557
86

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399