AWS Deep Learning Containers 发布 PyTorch 2.3.0 推理容器镜像
AWS Deep Learning Containers (DLC) 是亚马逊云科技提供的一组预构建的深度学习容器镜像,这些镜像经过优化,可以在 AWS 云环境中高效运行。这些容器包含了流行的深度学习框架及其依赖项,使数据科学家和开发人员能够快速部署深度学习工作负载,而无需花费时间配置环境。
近日,AWS DLC 项目发布了 PyTorch 2.3.0 版本的推理容器镜像,支持 Python 3.11 运行环境。这些镜像针对 EC2 实例进行了专门优化,提供了 CPU 和 GPU 两种计算架构的版本。
镜像版本特性
本次发布的 PyTorch 推理容器镜像主要包含以下两个版本:
-
CPU 版本镜像:基于 Ubuntu 20.04 操作系统,包含了 PyTorch 2.3.0 的 CPU 版本,适用于不需要 GPU 加速的推理场景。该镜像预装了 torchaudio 2.3.0 和 torchvision 0.18.0,以及常用的数据处理库如 NumPy 1.26.4、Pillow 10.3.0 和 OpenCV 4.10.0。
-
GPU 版本镜像:同样基于 Ubuntu 20.04,但包含了针对 CUDA 12.1 优化的 PyTorch 2.3.0 GPU 版本。除了包含 CPU 版本的所有功能外,还预装了 CUDA 12.1 工具链和 cuDNN 8 库,能够充分利用 NVIDIA GPU 的并行计算能力。
关键软件包版本
两个版本的容器镜像都预装了完整的 PyTorch 生态系统工具:
- PyTorch 核心框架:2.3.0 版本
- TorchServe 模型服务框架:0.11.0 版本
- TorchModelArchiver 模型打包工具:0.11.0 版本
- TorchAudio 音频处理库:2.3.0 版本
- TorchVision 计算机视觉库:0.18.0 版本
此外,镜像中还包含了常用的 Python 数据处理和科学计算库:
- NumPy 1.26.4:基础数值计算库
- SciPy 1.13.1:科学计算工具集
- Pandas 2.2.2(仅 GPU 版本):数据分析和处理工具
- OpenCV 4.10.0:计算机视觉库
- Pillow 10.3.0:图像处理库
系统级优化
这些容器镜像在系统层面进行了多项优化:
-
编译器支持:包含了 GCC 9 和 libstdc++6 等基础编译工具链,确保代码能够高效编译运行。
-
开发工具:预装了 Emacs 等开发工具,方便开发者在容器内直接进行代码编辑和调试。
-
AWS 集成:内置了 AWS CLI 1.33.4、Boto3 1.34.122 等 AWS 工具,便于与 AWS 服务集成。
-
依赖管理:使用 pip 和 apt 双重包管理系统,确保 Python 和系统级依赖都能得到妥善管理。
使用场景
这些预构建的 PyTorch 推理容器镜像特别适合以下场景:
-
模型部署:快速部署训练好的 PyTorch 模型到生产环境,无需担心环境配置问题。
-
推理服务:构建高性能的模型推理服务,支持 REST API 或 gRPC 接口。
-
批量推理:处理大批量的推理任务,充分利用 EC2 实例的计算资源。
-
开发测试:为开发团队提供一致的开发环境,避免"在我机器上能运行"的问题。
总结
AWS Deep Learning Containers 提供的这些 PyTorch 推理镜像,为机器学习工程师和数据科学家提供了开箱即用的深度学习环境。通过使用这些经过优化的容器镜像,团队可以大幅减少环境配置时间,将更多精力投入到模型开发和业务逻辑实现上。特别是对于需要在 AWS EC2 上部署 PyTorch 模型的企业,这些预构建的容器镜像提供了可靠且高性能的解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00