Tensor Puzzles 项目教程
2024-09-18 02:13:16作者:范垣楠Rhoda
1. 项目介绍
Tensor Puzzles 是一个由 Sasha Rush 创建的开源项目,旨在帮助学习者通过解决一系列的谜题来掌握 PyTorch 和 NumPy 中的张量操作。这些谜题设计得像国际象棋谜题一样,虽然不模拟实际程序的复杂性,但通过练习可以提高对张量广播和形状管理的理解。
项目的主要目标是让学习者真正掌握张量广播的语义,并内化数据形状在机器学习中的重要性。通过解决这些谜题,学习者可以更好地理解如何在 PyTorch 中进行高效的张量操作。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 和 PyTorch。你可以通过以下命令安装 PyTorch:
pip install torch
2.2 克隆项目
使用 Git 克隆 Tensor Puzzles 项目到本地:
git clone https://github.com/srush/Tensor-Puzzles.git
cd Tensor-Puzzles
2.3 运行示例
项目中包含一个 Jupyter Notebook 文件 Tensor Puzzlers.ipynb,你可以通过以下命令启动 Jupyter Notebook:
jupyter notebook
在 Jupyter Notebook 中打开 Tensor Puzzlers.ipynb,按照教程逐步解决谜题。
2.4 示例代码
以下是一个简单的示例代码,展示如何解决第一个谜题 ones:
import torch
def ones(i: int) -> torch.Tensor:
return torch.ones(i)
# 测试代码
test_ones = ones(5)
print(test_ones)
3. 应用案例和最佳实践
3.1 应用案例
Tensor Puzzles 可以用于多种场景,包括但不限于:
- 机器学习面试准备:通过解决这些谜题,面试者可以展示他们对张量操作的深入理解。
- 教学工具:教师可以使用这些谜题来教授学生如何在不依赖标准库的情况下进行张量操作。
3.2 最佳实践
- 逐步解决:建议从简单的谜题开始,逐步挑战更复杂的谜题。
- 代码优化:在解决谜题时,尝试优化代码以减少计算量和内存使用。
- 社区交流:参与 GitHub 上的讨论,与其他学习者交流解题思路和技巧。
4. 典型生态项目
Tensor Puzzles 是 Sasha Rush 创建的一系列与机器学习和编程语言相关的谜题项目之一。以下是一些相关的项目:
- GPU Puzzles:专注于 GPU 编程的谜题。
- Autodiff Puzzles:涉及自动微分的谜题。
- Transformer Puzzles:与 Transformer 模型相关的谜题。
- LLM Training Puzzles:与大型语言模型训练相关的谜题。
这些项目共同构成了一个丰富的学习资源,帮助学习者深入理解机器学习和编程语言的各个方面。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328