高效骨骼动作识别:Semantics-Guided Neural Networks (SGN) 项目推荐
项目介绍
在基于骨骼的人类动作识别领域,随着深度学习技术的快速发展,越来越多的研究者倾向于使用非常深的神经网络来处理3D关节坐标数据。然而,这种趋势往往忽略了计算效率的重要性。为了解决这一问题,微软研究院提出了一种简单而有效的语义引导神经网络(Semantics-Guided Neural Network, SGN)。SGN通过引入关节类型和帧索引等高级语义信息,显著提升了特征表示能力,同时保持了模型的轻量化和高效率。
项目技术分析
SGN的核心创新在于其语义引导机制。通过在网络中显式地引入关节类型和帧索引等语义信息,SGN能够更好地捕捉人体关节的空间和时间结构,从而提高动作识别的准确性。此外,SGN还通过两个模块——关节级模块和帧级模块——来分层次地建模关节之间的关系。关节级模块用于建模同一帧内关节的相关性,而帧级模块则通过将同一帧内的关节作为一个整体来建模帧之间的依赖关系。
从技术实现上看,SGN采用了图卷积网络(GCN)和卷积神经网络(CNN)的组合。具体来说,关节级模块使用了三层GCN来建模关节之间的依赖关系,而帧级模块则使用了两层CNN来建模帧之间的依赖关系。这种设计不仅提高了模型的表达能力,还显著减少了模型的参数量,使其在保持高性能的同时,具有更高的计算效率。
项目及技术应用场景
SGN在多个领域具有广泛的应用前景。首先,在智能监控系统中,SGN可以用于实时识别和分析人体动作,从而提高安全性和监控效率。其次,在虚拟现实(VR)和增强现实(AR)领域,SGN可以用于动作捕捉和实时渲染,提升用户体验。此外,SGN还可以应用于医疗康复、体育训练等领域,通过分析患者的动作模式,提供个性化的康复方案或训练建议。
项目特点
- 高效性:SGN在保持高性能的同时,具有极低的模型复杂度,参数量仅为同类方法的十分之一,显著提高了计算效率。
- 语义引导:通过引入关节类型和帧索引等高级语义信息,SGN能够更好地捕捉人体动作的本质特征,提高识别准确性。
- 模块化设计:SGN采用关节级和帧级两个模块,分层次地建模关节之间的关系,使得模型结构更加清晰和易于理解。
- 易于部署:SGN的代码基于PyTorch实现,支持Python 3.6及以上版本,易于集成到现有的深度学习工作流中。
结语
SGN作为一种高效且准确的骨骼动作识别方法,不仅在学术研究中具有重要价值,也在实际应用中展现出巨大的潜力。无论你是研究者还是开发者,SGN都值得你深入探索和应用。快来体验SGN带来的高效动作识别吧!
参考文献:
Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., & Zheng, N. (2020). Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00