高效骨骼动作识别:Semantics-Guided Neural Networks (SGN) 项目推荐
项目介绍
在基于骨骼的人类动作识别领域,随着深度学习技术的快速发展,越来越多的研究者倾向于使用非常深的神经网络来处理3D关节坐标数据。然而,这种趋势往往忽略了计算效率的重要性。为了解决这一问题,微软研究院提出了一种简单而有效的语义引导神经网络(Semantics-Guided Neural Network, SGN)。SGN通过引入关节类型和帧索引等高级语义信息,显著提升了特征表示能力,同时保持了模型的轻量化和高效率。
项目技术分析
SGN的核心创新在于其语义引导机制。通过在网络中显式地引入关节类型和帧索引等语义信息,SGN能够更好地捕捉人体关节的空间和时间结构,从而提高动作识别的准确性。此外,SGN还通过两个模块——关节级模块和帧级模块——来分层次地建模关节之间的关系。关节级模块用于建模同一帧内关节的相关性,而帧级模块则通过将同一帧内的关节作为一个整体来建模帧之间的依赖关系。
从技术实现上看,SGN采用了图卷积网络(GCN)和卷积神经网络(CNN)的组合。具体来说,关节级模块使用了三层GCN来建模关节之间的依赖关系,而帧级模块则使用了两层CNN来建模帧之间的依赖关系。这种设计不仅提高了模型的表达能力,还显著减少了模型的参数量,使其在保持高性能的同时,具有更高的计算效率。
项目及技术应用场景
SGN在多个领域具有广泛的应用前景。首先,在智能监控系统中,SGN可以用于实时识别和分析人体动作,从而提高安全性和监控效率。其次,在虚拟现实(VR)和增强现实(AR)领域,SGN可以用于动作捕捉和实时渲染,提升用户体验。此外,SGN还可以应用于医疗康复、体育训练等领域,通过分析患者的动作模式,提供个性化的康复方案或训练建议。
项目特点
- 高效性:SGN在保持高性能的同时,具有极低的模型复杂度,参数量仅为同类方法的十分之一,显著提高了计算效率。
- 语义引导:通过引入关节类型和帧索引等高级语义信息,SGN能够更好地捕捉人体动作的本质特征,提高识别准确性。
- 模块化设计:SGN采用关节级和帧级两个模块,分层次地建模关节之间的关系,使得模型结构更加清晰和易于理解。
- 易于部署:SGN的代码基于PyTorch实现,支持Python 3.6及以上版本,易于集成到现有的深度学习工作流中。
结语
SGN作为一种高效且准确的骨骼动作识别方法,不仅在学术研究中具有重要价值,也在实际应用中展现出巨大的潜力。无论你是研究者还是开发者,SGN都值得你深入探索和应用。快来体验SGN带来的高效动作识别吧!
参考文献:
Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., & Zheng, N. (2020). Semantics-Guided Neural Networks for Efficient Skeleton-Based Human Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00