AWS Deep Learning Containers发布PyTorch Graviton CPU推理容器v1.37版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署机器学习工作负载。这些容器经过AWS优化,可直接在EC2、EKS、SageMaker等服务上运行,大幅简化了深度学习环境的搭建过程。
近日,AWS发布了DLC项目中针对PyTorch框架的Graviton处理器优化版本v1.37,这是一个专为ARM架构Graviton CPU设计的PyTorch推理容器。该版本基于PyTorch 2.3.0构建,支持Python 3.11运行环境,并预装了Ubuntu 20.04操作系统。
核心特性与技术细节
硬件架构优化
此版本特别针对AWS Graviton处理器进行了优化。Graviton是AWS基于ARM架构自主研发的云服务器处理器,相比传统x86架构,在性价比和能效比方面具有显著优势。该容器镜像充分利用了Graviton处理器的特性,为PyTorch推理工作负载提供了更好的性能表现。
软件栈组成
容器内预装了PyTorch 2.3.0及其相关组件,包括:
- torchaudio 2.3.0:音频处理库
- torchvision 0.18.0:计算机视觉库
- torchserve 0.11.0:模型服务框架
- torch-model-archiver 0.11.0:模型归档工具
这些组件都针对CPU环境进行了编译优化,确保在Graviton处理器上能够发挥最佳性能。
预装依赖库
为了简化开发者的工作,容器中预装了常用的数据处理和机器学习库:
- NumPy 1.26.4:基础数值计算库
- pandas 2.2.2:数据分析和处理工具
- scikit-learn 1.5.0:机器学习算法库
- scipy 1.14.0:科学计算工具包
- OpenCV 4.10.0:计算机视觉库
此外,还包含了AWS SDK(boto3 1.34.137)和SageMaker专用工具(sagemaker-pytorch-inference 2.0.24),方便与AWS云服务集成。
使用场景与优势
这个容器镜像特别适合以下场景:
- 在Graviton实例上部署PyTorch推理服务
- 构建轻量级的机器学习推理端点
- 需要ARM架构支持的边缘计算场景
- 成本敏感的推理工作负载
相比通用x86架构的容器,这个版本在Graviton实例上运行时能够提供:
- 更高的性价比:Graviton实例通常比同配置x86实例价格更低
- 更好的能效比:ARM架构在功耗方面具有先天优势
- 原生优化:所有组件都针对ARM架构进行了编译优化
版本兼容性
该容器镜像支持Python 3.11环境,与PyTorch 2.3.0完全兼容。开发者可以放心使用PyTorch 2.x系列的最新特性,如改进的分布式训练支持、性能优化等。同时,容器内也预装了必要的构建工具,如Cython 3.0.10和ninja 1.11.1.1,方便用户进行自定义扩展。
总结
AWS Deep Learning Containers的这个新版本为使用Graviton处理器的PyTorch用户提供了开箱即用的解决方案。通过预装优化的软件栈和必要的工具链,开发者可以快速部署高效的推理服务,而无需关心底层环境配置的复杂性。对于追求成本效益和能效比的机器学习应用场景,这个容器镜像是一个值得考虑的选择。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00