MB-iSTFT-VITS2 项目使用教程
2024-09-18 00:33:35作者:幸俭卉
1. 项目目录结构及介绍
MB-iSTFT-VITS2 项目的目录结构如下:
MB-iSTFT-VITS2/
├── configs/
│ ├── mb_istft_vits2_base.json
│ └── ...
├── filelists/
│ ├── train.txt
│ └── val.txt
├── monotonic_align/
│ ├── setup.py
│ └── ...
├── resources/
│ └── ...
├── text/
│ └── ...
├── LICENSE
├── README.md
├── attentions.py
├── commons.py
├── data_utils.py
├── inference.py
├── losses.py
├── mel_processing.py
├── models.py
├── modules.py
├── onnx_export.py
├── pqmf.py
├── preprocess.py
├── requirements.txt
├── stft.py
├── stft_loss.py
├── train.py
├── train_ms.py
├── training_colab.ipynb
├── training_local.py
├── transforms.py
└── utils.py
目录结构介绍
- configs/: 包含项目的配置文件,如
mb_istft_vits2_base.json。 - filelists/: 包含训练和验证数据的文件列表,如
train.txt和val.txt。 - monotonic_align/: 包含用于单调对齐的 Cython 代码和相关文件。
- resources/: 包含项目所需的其他资源文件。
- text/: 包含文本处理相关的文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- attentions.py: 注意力机制相关的代码。
- commons.py: 通用工具函数。
- data_utils.py: 数据处理相关的工具函数。
- inference.py: 用于推理的脚本。
- losses.py: 定义损失函数的代码。
- mel_processing.py: 梅尔频谱处理相关的代码。
- models.py: 定义模型的代码。
- modules.py: 定义模型组件的代码。
- onnx_export.py: 用于导出 ONNX 模型的脚本。
- pqmf.py: 多频带处理相关的代码。
- preprocess.py: 数据预处理脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- stft.py: 短时傅里叶变换相关的代码。
- stft_loss.py: 短时傅里叶变换损失函数相关的代码。
- train.py: 训练脚本。
- train_ms.py: 多说话人训练脚本。
- training_colab.ipynb: 用于 Google Colab 的训练脚本。
- training_local.py: 本地训练脚本。
- transforms.py: 数据变换相关的代码。
- utils.py: 通用工具函数。
2. 项目的启动文件介绍
训练脚本
- train.py: 用于单说话人模型的训练。
- train_ms.py: 用于多说话人模型的训练。
推理脚本
- inference.py: 用于模型的推理和生成语音。
数据预处理脚本
- preprocess.py: 用于数据集的预处理,包括文本清理和数据准备。
3. 项目的配置文件介绍
配置文件位于 configs/ 目录下,常见的配置文件包括:
- mb_istft_vits2_base.json: 多频带 iSTFT-VITS2 模型的基础配置文件。
配置文件示例
{
"istft_vits": true,
"upsample_rates": [8, 8],
"subbands": 4,
"mb_istft_vits": true,
"hidden_channels": 96,
"n_layers": 3,
"upsample_initial_channel": 256
}
配置文件字段介绍
- istft_vits: 是否启用 iSTFT-VITS 模型。
- upsample_rates: 上采样率。
- subbands: 子频带数量。
- mb_istft_vits: 是否启用多频带 iSTFT-VITS 模型。
- hidden_channels: 隐藏层通道数。
- n_layers: 层数。
- upsample_initial_channel: 初始上采样通道数。
通过修改这些配置文件,可以调整模型的行为和性能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
140
170
暂无简介
Dart
598
131
React Native鸿蒙化仓库
JavaScript
235
309
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
738
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
199
74
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460