MB-iSTFT-VITS2 项目使用教程
2024-09-18 05:20:42作者:幸俭卉
1. 项目目录结构及介绍
MB-iSTFT-VITS2 项目的目录结构如下:
MB-iSTFT-VITS2/
├── configs/
│ ├── mb_istft_vits2_base.json
│ └── ...
├── filelists/
│ ├── train.txt
│ └── val.txt
├── monotonic_align/
│ ├── setup.py
│ └── ...
├── resources/
│ └── ...
├── text/
│ └── ...
├── LICENSE
├── README.md
├── attentions.py
├── commons.py
├── data_utils.py
├── inference.py
├── losses.py
├── mel_processing.py
├── models.py
├── modules.py
├── onnx_export.py
├── pqmf.py
├── preprocess.py
├── requirements.txt
├── stft.py
├── stft_loss.py
├── train.py
├── train_ms.py
├── training_colab.ipynb
├── training_local.py
├── transforms.py
└── utils.py
目录结构介绍
- configs/: 包含项目的配置文件,如
mb_istft_vits2_base.json
。 - filelists/: 包含训练和验证数据的文件列表,如
train.txt
和val.txt
。 - monotonic_align/: 包含用于单调对齐的 Cython 代码和相关文件。
- resources/: 包含项目所需的其他资源文件。
- text/: 包含文本处理相关的文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍和使用说明。
- attentions.py: 注意力机制相关的代码。
- commons.py: 通用工具函数。
- data_utils.py: 数据处理相关的工具函数。
- inference.py: 用于推理的脚本。
- losses.py: 定义损失函数的代码。
- mel_processing.py: 梅尔频谱处理相关的代码。
- models.py: 定义模型的代码。
- modules.py: 定义模型组件的代码。
- onnx_export.py: 用于导出 ONNX 模型的脚本。
- pqmf.py: 多频带处理相关的代码。
- preprocess.py: 数据预处理脚本。
- requirements.txt: 项目依赖的 Python 包列表。
- stft.py: 短时傅里叶变换相关的代码。
- stft_loss.py: 短时傅里叶变换损失函数相关的代码。
- train.py: 训练脚本。
- train_ms.py: 多说话人训练脚本。
- training_colab.ipynb: 用于 Google Colab 的训练脚本。
- training_local.py: 本地训练脚本。
- transforms.py: 数据变换相关的代码。
- utils.py: 通用工具函数。
2. 项目的启动文件介绍
训练脚本
- train.py: 用于单说话人模型的训练。
- train_ms.py: 用于多说话人模型的训练。
推理脚本
- inference.py: 用于模型的推理和生成语音。
数据预处理脚本
- preprocess.py: 用于数据集的预处理,包括文本清理和数据准备。
3. 项目的配置文件介绍
配置文件位于 configs/
目录下,常见的配置文件包括:
- mb_istft_vits2_base.json: 多频带 iSTFT-VITS2 模型的基础配置文件。
配置文件示例
{
"istft_vits": true,
"upsample_rates": [8, 8],
"subbands": 4,
"mb_istft_vits": true,
"hidden_channels": 96,
"n_layers": 3,
"upsample_initial_channel": 256
}
配置文件字段介绍
- istft_vits: 是否启用 iSTFT-VITS 模型。
- upsample_rates: 上采样率。
- subbands: 子频带数量。
- mb_istft_vits: 是否启用多频带 iSTFT-VITS 模型。
- hidden_channels: 隐藏层通道数。
- n_layers: 层数。
- upsample_initial_channel: 初始上采样通道数。
通过修改这些配置文件,可以调整模型的行为和性能。
登录后查看全文
热门项目推荐
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
149
1.95 K

deepin linux kernel
C
22
6

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395

React Native鸿蒙化仓库
C++
192
274

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
190

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
518

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0