AWS Deep Learning Containers发布PyTorch ARM64架构推理镜像v1.8版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化,包含了流行的深度学习框架及其依赖项,能够帮助开发者快速在AWS云平台上部署深度学习应用。这些容器镜像支持多种深度学习框架,包括PyTorch、TensorFlow等,并且针对不同的硬件架构(如x86、ARM)和计算场景(如训练、推理)进行了专门优化。
近日,AWS Deep Learning Containers项目发布了针对ARM64架构的PyTorch推理镜像v1.8版本。这一更新主要面向使用ARM64架构EC2实例的用户,提供了基于PyTorch 2.5.1的CPU和GPU版本容器镜像。这些镜像基于Ubuntu 22.04操作系统构建,支持Python 3.11环境,为ARM64架构上的深度学习推理任务提供了开箱即用的解决方案。
镜像版本详情
本次发布的v1.8版本包含两个主要镜像:
-
CPU版本镜像:适用于没有GPU加速的ARM64架构EC2实例,包含了PyTorch 2.5.1的CPU版本及其相关生态工具。
-
GPU版本镜像:针对配备NVIDIA GPU的ARM64架构EC2实例优化,集成了CUDA 12.4工具链,提供了完整的GPU加速支持。
两个镜像都预装了PyTorch生态系统中常用的工具包,包括torchaudio(2.5.1版本)、torchvision(0.20.1版本)以及模型服务工具torchserve和torch-model-archiver(均为0.12.0版本)。
关键软件包版本
在软件包选择上,AWS团队精心挑选了与PyTorch 2.5.1兼容的版本组合:
- 核心框架:PyTorch 2.5.1(CPU版本或CUDA 12.4 GPU版本)
- 数据处理:NumPy 2.1.3、Pandas 2.2.3(仅GPU版本)、SciPy 1.14.1
- 图像处理:OpenCV 4.10.0.84、Pillow 11.0.0
- 开发工具:Cython 3.0.11、Ninja 1.11.1.1
- AWS集成:Boto3 1.35.66、AWS CLI 1.36.7
这些软件包的版本组合经过了AWS的严格测试,确保了在ARM64架构上的稳定性和性能表现。
技术特点与优势
-
ARM64架构优化:这些镜像是专门为ARM64架构设计的,能够充分利用基于ARM的EC2实例(如Graviton系列)的性能优势,提供更高的性价比。
-
完整的PyTorch生态系统:除了核心的PyTorch框架外,镜像还包含了模型服务工具链(torchserve)、音频处理(torchaudio)和计算机视觉(torchvision)等扩展库,覆盖了从模型开发到部署的全流程需求。
-
生产就绪的环境:预装了必要的开发工具和调试工具(如emacs),同时保持了容器镜像的精简性,适合直接用于生产环境部署。
-
CUDA 12.4支持:GPU版本镜像基于最新的CUDA 12.4工具链构建,提供了对NVIDIA最新GPU架构的优化支持。
适用场景
这些ARM64架构的PyTorch推理镜像特别适合以下场景:
- 在基于ARM的EC2实例上部署PyTorch推理服务
- 构建高效的边缘计算AI应用
- 需要高性价比的深度学习推理解决方案
- 在混合架构环境中保持一致的部署体验
总结
AWS Deep Learning Containers发布的这一系列PyTorch ARM64架构推理镜像,为开发者提供了在ARM平台上运行PyTorch模型的高效解决方案。通过预配置优化的软件栈和工具链,开发者可以专注于模型开发和业务逻辑,而无需花费大量时间在环境配置和依赖管理上。特别是对于追求成本效益的用户,这些基于ARM架构的镜像配合AWS的Graviton实例,能够显著降低深度学习推理的总体拥有成本。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00